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Abstract. Context awareness is one of the building blocks of many ap-
plications in pervasive computing. Recognizing the current context of a
user or device, that is, the situation in which some action happens, often
requires dealing with data from different sensors, and thus different do-
mains. The Growing Neural Gas algorithm is a classification algorithm
especially designed for un-supervised learning of unknown input distri-
butions; a variation, the Lifelong Growing Neural Gas (LLGNG), is well
suited for arbitrary long periods of learning, as its internal parameters
are self-adaptive. These features are ideal for automatically classifying
sensor data to recognize user or device context. However, as most classi-
fication algorithms, in its standard form it is only suitable for numerical
input data. Many sensors which are available on current information
appliances are nominal or ordinal in type, making their use difficult. Ad-
ditionally, the automatically created clusters are usually too fine-grained
to distinguish user-context on an application level. This paper presents
general and heuristic extensions to the LLGNG classifier which allow its
direct application for context recognition. On a real-world data set with
two months of heterogeneous data from different sensors, the extended
LLGNG classifier compares favorably to k-means and SOM classifiers.

1 Introduction

Context Awareness, as a research topic, is concerned with the environment a
user or device is situated in. Although its roots probably lie in robotics [1], the
advantages of making applications in the fields of pervasive, ubiquitous or mobile
computing aware of the user or device context are obvious: user interaction and
application behavior can be adapted to the current situation, making devices
and their applications easier to use and making more efficient use of the device
resources.

Our approach to making devices context aware is based on three steps: sensor
data acquisition, feature extraction and classification [2]. In these three steps,
high level context information is inferred from low level sensor data. There are
two key issues in this approach: the significance of acquired sensor data, and the
use of domain-specific heuristics to extract appropriate features. A broad view on
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the current context is necessary for many applications, and can only be derived
with a multitude of sensors with ideally orthogonal views of the environment.
Using multiple simple sensors and merging their data at the classification step
allows to use different heuristics for each sensor domain, and thus profit from
well-known methods in the specific areas.

Examples for simple sensors that are relevant to typical context-aware appli-
cations are Bluetooth or wireless LAN adapters, which can capture parts of the
network aspect, the GSM cell ID, which defines a qualitative location aspect, or
the name of the currently active application (or application part), which cap-
tures a part of the activity aspect of a user or device context. Other, more
traditional sensors include microphones and accelerometers to capture the ac-
tivity aspect [3], video cameras, or simple light and temperature sensors. The
types of values provided by these sensors are very different. A method to cope
with this heterogeneity of features has first been presented in [4] for the general
case, independent of the used classification algorithm. This paper is concerned
with necessary modifications to the Growing Neural Gas (GNG) classifier.

GNG has been introduced by Bernd Fritzke in 1995 [5] and shares a number
of properties with the conceptually similar Dynamic Cell Structure algorithm,
which has been developed independently by Jörg Bruske and Gerald Sommer [6].
In 1998, Fred Hamker extended GNG to support life-long learning, addressing
the Stability-Plasticity Dilemma [7]; the resulting algorithm has also been called
Lifelong Growing Neural Gas (LLGNG). The main difference between GNG
and LLGNG is that the latter uses local error counters at each node to prevent
unbounded insertion of new nodes, thus allowing on-line learning for arbitrary
long periods.

The basic principle of GNG and LLGNG is to insert new nodes (clusters)
based on local error, i.e. it inserts nodes where the input distribution is not well
represented by clusters. For classification of features to recognize context, this is
an important property because it ensures independence of the usually unknown
input distribution. Additionally, edges are created between the “winner” node,
which is closest to the presented sample (in this case a feature vector) and the
second nearest one; other edges of the winner node are aged and removed after
some maximum age. The resulting data structure is a cyclic, undirected, weighted
graph of nodes and edges, which is continuously updated by competitive Hebbian
learning. In LLGNG, nodes and edges are created and removed based on local
criteria. For details on the insertion and removal criteria, we refer to [7].

2 Extensions to LLGNG

For using LLGNG for context recognition, we extend it in two areas:

2.1 Extension 1: Coping with heterogeneous features

To ease the implementation, we reduce the set of heterogeneous features to a
minimal subset of abstract features providing meaningful implementations of the
necessary two operations getDistance and moveTowards (see also [4]).
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Implementations of these methods may be general for certain types of fea-
tures, but will typically benefit from domain-specific heuristics. Knowledge about
the respective sensing technology should be applied in the implementation of
these two methods.

For a framework for context awareness and prediction [2] on mobile device,
we found that many of the typical features can be reduced to a common set of
basic features. Currently, we use base classes AbstractString, AbstractStringList,
NumericalContinuous, NumericalDiscrete, and Binary for the actual implemen-
tations. The NumericalContinous, NumericalDiscrete, and Binary features im-
plement getDistance and moveTowards as the Euclidean distance metric and
thus need no special considerations.

On the other hand, the AbstractString feature serves as a base class for
features that return a single-dimensional output value that can be represented
as a string (e.g.WLAN SSID, MAC address, GSM cell ID, etc.). Although not the
best solution, using the string representation as similarity measure for the feature
values is still more meaningful than having no metric at all. For getDistance, we
defined the Levenshtein distance (normalized to the longest encountered string)
as distance metric. For moveTowards, our extended version of the Levenshtein
algorithm also applies these operations with a given probability and returns a
string that is somewhere between (in terms of our distance metric) the compared
strings and represents the actual cluster position for this feature dimension.

The AbstractStringList feature serves as a base class for features that return a
set of output values per sample point (e.g. list of peers, list of connected devices,
etc.) that cannot be easily represented by a single string. Based on the idea of
using the Levenshtein distance, we assign each list element a unique index and
compose a bit vector from the string list. If a given string is present in the list,
its corresponding bit in the bit vector is set. The distance metric for getDistance
is then defined as the Hamming distance between the bit vectors of two given
lists. Again, the moveTowards function can compose an intermediate bit vector
that represents the actual cluster position.

Our extended version of LLGNG simply uses getDistance and moveTowards
on each dimension instead of applying Euclidean metrics.

2.2 Extension 2: Meta clusters

In the standard formulation of GNG and LLGNG, the edges in the internal
graph are only used for three purposes:

– for adapting neighbors (adjacent nodes) of the winner
– for inserting a new node between the winner and its neighbor
– for removing nodes which have lost all edges due to edge aging

Additionally, the local insertion and removal criteria in LLGNG depend on the
neighbors. As can be seen, the edges are not used for analyzing the graph struc-
ture itself.
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One of the problems with using standard, unsupervised clustering algorithms
for context recognition is that the automatically created clusters are usually too
fine-grained for mapping them to high-level context information like “in a meet-
ing” or “at home”; for defining simple context based rules on the application level,
we would like to achieve this granularity. Therefore, we introduce the concept
of meta clusters by explicitly using properties of the generated graph structure.
This can be seen as a heuristic that is independent of the problem domain, but
that depends on the internal (LL)GNG graph.

The (LL)GNG graph, after some learning time, usually consists of multiple
components distributed over the cluster space. These components consist of two
or more connected nodes and are perfect candidates for high-level context in-
formation, because they cover arbitrarily shaped areas in the high-dimensional,
heterogeneous cluster space instead of only RBF-type shapes that single clus-
ters cover. In our extended version, we assign each component a unique meta
cluster ID and use this ID for mapping to high level context information. For
performance reasons, the meta cluster IDs can not be recalculated after each
step, but have to be updated during on-line learning. When starting with two
adjacent nodes in the initialization phase, we simply assign the first meta cluster
ID to this component and cache the ID in each node. During on-line learning,
insertion and removal of edges will lead to the following cases:

– inserting a new node: Since a new node will only be inserted between two
existing ones, its meta cluster ID is set to the ID of the connected nodes.

– inserting an edge between two nodes with the same ID: No change is neces-
sary.

– inserting an edge between two nodes with different ID: Due to merging two
components, one of the IDs will be used for the resulting component, over-
writing the other one. When both IDs have already been assigned to high
level context information, the merge is prevented by not inserting the edge.

– removing an edge: If the previously directly adjacent nodes are no longer
connected via another path, a meta cluster split has occured and a new
meta cluster ID must be allocated for one of the two components.

Normal adaptation of clusters has no influence on the graph structure and can
thus be ignored for the handling of meta clusters. Further (performance) opti-
mizations for meta cluster handling in our extension include a caching of meta
cluster IDs and an incremental check if two nodes are still connected after re-
moving an edge.

2.3 Performance optimizations

Finding the nearest and second nearest cluster to a sample vector is a common
task performed by (LL)GNG. Our chosen architecture allows different types of
features in every dimension of the cluster space; therefore, comparisons have
to be performed separately for every dimension and cannot be optimized. One
option is to limit the amount of necessary comparisons to an absolute minimum.
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To accomplish this, we store every cluster in a splaytree sorted by their distance
from the origin. A splaytree has the advantage that recently accessed nodes are
kept on the very top of the tree and infrequently used nodes move towards the
bottom. Assuming that samples aren’t evenly distributed in the cluster space but
accumulated, the nodes of interest are always on the top of the tree and the tree
only has to be traversed completely if the sample data changes spontaneously.

Additional optimizations were done by caching results of internal computa-
tions for the insertion and removal criteria as defined in [7]. These helper vari-
ables are only recomputed when the node position is changed instead of each
time a neighbor is queried. More details on these optimizations are presented
in [2,8].

3 Evaluation

Our extended LLGNG algorithm has been compared to the more well-known
classification algorithms k-means and Kohonen Self-Organizing Map (SOM) both
with artificial and real-world data sets. Details on the comparison can be found
in [2].

3.1 Data Set

The real-world data set used in this evaluation has been gathered continuously
over a period of about two months on a standard notebook computer which was
used for daily work. No special considerations were taken during the use of the
notebook regarding context recognition. Therefore, the data set should provide
representative sensor data for the chosen scenario. A wide range of sensors was
used, including a microphone, the active/foreground window, if it was plugged
into its charger, WLAN, and GSM. Domain-specific heuristics for these sensors
are used to extract 28 different features. At one sample every 30 seconds, roughly
90000 samples of 28 dimensions were collected.

3.2 Pre-processing and classification error

Classification error was defined as the average distance between each data point
and its respective best matching cluster after training has been completed, which
is similar to the cost function minimized by k-means. This is a universal crite-
rion suitable for evaluating the classification quality of arbitrary unsupervised
clustering algorithms, and it is already well-defined and used in different imple-
mentations like the SOM Toolbox for Matlab; lower values for the classification
error represent a better adaptation to the feature values and thus a more accu-
rate classification.

Both k-means and SOM are used in a batch training mode and are thus not
susceptible to initial transients, while LLGNG suffers from such effects due to
its online mode. For k-means and SOM, the data set has been pre-processed to
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transform all non-numerical into numerical (binary) input dimensions by assign-
ing one input dimension for each possible feature value, i.e. the one-of-C method.
This transformation yields a 198 dimensional input space with a large number of
binary inputs. All dimensions are further normalized to [0; 1], as recommended
by standard literature on clustering. Since the implementations of the distance
metrics specific to each feature are also normalized to [0; 1], the overall classifi-
cation error is assumed to be comparable even if the number of input dimensions
is different.
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(a) K-means
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(c) Extended LLGNG

Fig. 1. Cluster trajectories computed by the different classifiers

3.3 K-Means

K-means clustering divides a given data set into k clusters by minimizing the sum
of distances between the data points and cluster centers, whereas k has to be pre-
determined. Thus, k-means is actually not usable for live context classification,
and is only used for comparison. The k-means clustering implementation in the
Statistics Toolbox for Matlab was used iteratively for k = 2 . . . 40 to determine
the optimal number of clusters. With the optimum of 6 clusters, k-means reached
a final classification error of 0.7451.

In Fig. 1a, the assigned clusters are depicted for each time step in the initial
feature data set. The trajectory seems unstable and oscillates quickly between
contexts. K-means clustering in this form is infeasible for embedded systems
due to the enormous computational power necessary to optimize the number of
clusters; determining the number of clusters for this test case took over 2 hours
with 5 computers similar to our reference machine being used in parallel.

3.4 Kohonen Self-Organizing Map

The Kohonen SOM is, in contrast to k-means, a soft clustering approach: each
input sample is assigned to each cluster with a certain degree of membership.
For the purpose of this comparison, this can easily be reduced to hard cluster-
ing by searching for the so-called “best matching unit”, which is then assumed
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to be the context class for the respective time step. The following evaluations
were performed with the specialized SOM Toolbox for Matlab developed by
the Laboratory of Computer and Information Science at Helsinki University of
Technology because of its flexibility and simple means of visualization.

Training a new SOM with the whole data set took 690 seconds and results
in a final classification error of 0.5659. The SOM grid is automatically set to
71x21 clusters with a heuristic embedded in the toolbox. The u-matrix indicates
around 4 to 8 larger areas, which seems reasonable when compared to the 6
clusters found by the k-means method and which can be seen as some form of
meta clusters. Although the final classification error is lower than for k-means
clustering, this is not surprising because of the significantly larger number of
cluster prototypes that are available for mapping the input space. The large
number of clusters formed by the SOM could not be used for directly representing
high-level context, but a second classification step would be necessary.

The clusters assigned to the feature values for each time step are shown in
Fig. 1b as the numbers of respective best matching units. The trajectory also
shows oscillating behavior. Without a second step of clustering to exploit some
form of meta clusters formed by the SOM, the resulting cluster trajectories seem
unusable for context prediction on an abstract level. Additionally, the trajectory
of the whole data set presented in Fig. 1b shows signs of unfavorable separation
of clusters into areas in the input space around time step 50000: the apparent
switch to a completely separate region of cluster prototypes is not supported by
the visualization of the feature values. A change to different clusters around the
time step 50000 is also visible in the k-means trajectory in Fig. 1a, but it is not
as drastic as for the SOM.

3.5 Extended LLGNG

Prior to training the extended LLGNG algorithm with this test data set, a sim-
ulated annealing procedure was used to optimize some of its static parameters.
However, the optimization does not significantly improve the classification error,
suggesting stability against changes in the initial conditions or parameter sets
and supporting the findings reported in [9].

One-pass training with the whole data set took only 474 seconds, produces
103 clusters composing 9 meta clusters and achieves a final classification error of
only 0.0069. This means that the input data distribution is well approximated by
the automatically found clusters, even with the inherent noise in our real-world
data set and significantly less clusters than used by the SOM (71 · 21 = 1491).

Fig. 1c shows the best matching meta clusters for each time step; the meta
clusters are a higher-level concept than clusters and are thus suited better as
abstract context identifiers. When comparing the trajectories computed by k-
means, SOM, and the extended LLGNG variant, the latter one is more stable and
shows fewer oscillations, with the notable exception of the time frame between
time steps 64000 and 70000 where the LLGNG trajectory also shows oscillating
behavior.
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4 Conclusions

Lifelong Growing Neural Gas, a variant of the Growing Neural Gas classifica-
tion algorithm, is an ideal algorithm for context recognition because it is opti-
mized towards continuously running, un-supervised classification. In this paper,
we presented necessary extensions for applying it to heterogeneous input data
and for directly assigned high level context information to its output as well
as performance optimizations. While k-means and the Kohonen Self-Organizing
Map (SOM) produced classification errors of 0.7451 and 0.5659, respectively, our
extended LLGNG classifier achieved an error of only 0.0069.

It should be noted that, unlike SOM and k-means, the extended LLGNG is
used in online mode, which is far more challenging. Without any further changes,
the algorithm can immediately be used for continuous learning over arbitrary
periods of time. K-means and SOM both had to be trained to produce the
above results, with each sample being presented numerous times for training.
The extended LLGNG only had a single pass over the whole data set and still
achieves a significantly lower classification error and more stable results. One
suspected reason for this success is that our extensions that enable LLGNG to
deal directly with heterogeneous data indeed lead to higher classification quality
due to the lower-dimensional input space and due to the preservation of the
semantics of all feature dimensions.
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