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ABSTRACT
Gait authentication using a cell phone based accelerome-
ter sensor offers an unobtrusive, user-friendly, and periodic
way of authenticating individuals on their cell phones. In
this study, we present an approach to deal with inevitable
errors induced by continuously changing sensor orientation
and other noise under a realistic scenario (when the phone
is placed inside the trouser pockets and the user is walking)
by using the magnitude data of tri-axes accelerometer and
wavelet based noise elimination modules. This study utilizes
a gait data set of 35 participants collected at their respec-
tive normal walking pace in two different sessions with an
average gap of 25 days between the sessions.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication; H.1.2
[User/Machine Systems]: Human factors.

General Terms
Mobile devices, security

Keywords
Accelerometer, gait recognition, segmentation, variance,
wavelets

1. INTRODUCTION
Nowadays, cell phones are used for accessing a multitude

of services, such as e-commerce, m-banking, portable stor-
age, business, social, and entertainment applications. As a
result, cell phones hold a lot of sensitive information and
user’s whereabouts, etc. Due to their form factor and num-
ber of services they offer, we carry our cell phones through-
out our daily routine. This leads to the risk that they can
be lost, left unattended, or stolen. If not protected, anyone
can access sensitive information stored inside. Typically, cell
phones are protected by PIN/password based authentication
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mechanisms, which not only increases cognitive load on the
users but also consumes time, if users are interacting with
their cell phones on frequent basis.

Physiological biometrics could overcome the issue of cog-
nitive load, but they also face some other challenges such
as their deployment on mobile devices increase the product
cost alongside additional user time is consumed mainly due
to their Failure To Acquire (FTA) errors. Therefore, we
need to find a user friendly, robust, unobtrusive, and cost
efficient authentication mechanism for mobile devices.

Gait authentication has been proposed as an alternative
implicit authentication method for mobile devices and has
achieved promising results [2,7,8,10]. Gait is an individual’s
style of walking and gait authentication is a process of iden-
tifying and verifying the individuals by the way they walk.
Gait authentication using cell phone based accelerometers
is an active research area since 2009. Studies have shown
that cell phones with built-in accelerometers can learn to
recognize their owners from their gait [10]. On the other
hand studies have also reported various challenges that may
influence cell phone embedded accelerometer based gait au-
thentication [4], such as phone placement and orientation,
sensor sampling rate, clothing, and shoes. Previous stud-
ies [6–8] have used the gait data-sets which were recorded
under ideal scenarios. For instance a cell phone was tightly
attached at a fixed position and orientation on every partic-
ipants’ body and they were asked to wear the same shoes or
clothing when gait data was recorded in different sessions or
on different days.

However, under realistic scenarios it is quite difficult to
ensure that users will wear same cloths or will always place
their cell phones in fixed orientation. Defining a realistic
scenario for phone placement is quite subjective but we as-
sume that cell phone users often place their phones inside
their trouser pocket. Therefore, when a user walks with a
cell phone inside the pocket, the cell phone changes its ori-
entation during the walk.

This study focuses on solutions to deal with existing chal-
lenges such as changing orientation and other various noise
induced during the walk. Orientation independent results
can be achieved by using magnitude data of tri-axes ac-
celerometer. So the main contributions of this paper are;
i) we revisit the data processing steps of gait authentica-
tion [6,7] which mainly deal with issues like orientation and
noise cancellation; ii) to evaluate our approach we used a
data-set recorded under the realistic scenarios, iii) we also
introduce our adapted version of a gait cycle length estima-
tion algorithm [2].



2. DATA COLLECTION
We have recorded biometric gait data from 35 partici-

pants (6 females and 29 males) using a Google Nexus An-
droid phone. For data collection purpose, we developed an
Android application which records three dimensional (X, Y,
and Z axis) accelerometer data at a sampling rate of 100 Hz
and writes it to a text file with time stamps.

Participants were asked to wear a trouser with not-too-
loose front pockets. For capturing a distinctive walking
style, the phone or sensor must be placed close to the body
otherwise it might pick up to much random noise. In the
data recording phase the phone was placed inside the trousers
right side pocket as shown in figure 1. Participants were
asked to walk at their normal pace in a 68 meters long
straight corridor (with no stairs). They were told to wait
for 1 second at the end of walk then turn around and wait
for another second before starting their new walk. In one
session, every subject walked 4 × 68 = 272 meters or in
other words completed two rounds of the corridor. For ev-
ery subject, data recording was conducted in two different
sessions. An average gap between the sessions is about 25
days. Eight walks were recorded for every subject in two
different sessions.

(a) Phone being placed in-
side the pocket

(b) Phone postion inside
the pocket

Figure 1: Phone placement and its orientation at
the start of the session for all participants.

3. DATA DESCRIPTION AND PROCESSING
Figure 2 shows various activities performed in one data

recording session. Approximately the first 10-20 seconds of
data is when the phone was being placed inside the pocket,
and next 100 seconds are when person is standing still and
listening to the instructions. Then the participant starts
walking and reaches the end point. This walking activity
lasts around 50 seconds and varies from person to person as
it highly depends upon the walking pace of the person. At
the end of the the walk participant waits for a second, turns
around and waits for another second before the new walk,
and so on participant completes the session with four walks.
Data processing begins by separating session-wise recorded
walks and computing magnitude from tri-axes accelerometer
data.

3.1 Walk separation
Walk separation is achieved by monitoring the variance

of the y-axis data (any other axis, or the magnitude of ac-
celerometer data can also be used) with a sliding window of
one second. If the variance within this window rises above

a certain threshold, this marks the start of an active walk
segment and when the variance drops below that thresh-
old it marks the stop of that active walk segment. In this
study, we use a variance threshold of 0.8 m

s2
. Once all active

walk regions are marked, we pick those segments which are
longer than 10 seconds. Figure 2 shows the detected walk
segments. In this step, we compute the resultant vector as
given in equation 1 from individual axis data of each walk
which undergoes further data processing steps described in
the following subsections.

Rs =
√
x2 + y2 + z2 (1)
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Figure 2: Acceleration recorded along the y-axis
with detected four walk segments.

3.2 Interpolation
The accelerometer sensor on Android phones does not out-

put equidistant data. It only outputs data when Android
API’s onSensorChanged1 method is triggered. Therefore,
the time interval between two consecutive sensor values is
not equal. By applying interpolation, data can be reshaped
in equal intervals of time and can also be up-sampled in or-
der to avoid data loss of too many values, for this purpose,
we have used linear interpolation as given in equation 2.

ś = s0 +
(s1 − s0)(t́− t0)

(t1 − t0)
(2)

3.3 Zero Normalization
When the phone is in the steady state, acceleration mea-

sured along the axis influenced by gravity must be equal
to the earth gravitational force. Acceleration along the re-
maining two axes, which is not influenced by gravity must
be zero. However, acceleration recorded by a phone-based
accelerometer sensor is not stable over the time. Therefore,
acceleration along all three axes is zero normalized by sub-
tracting their respective mean as shown in equation 3, where
A is the acceleration over time and µ is the mean accelera-
tion.

Āi(t) = Ai(t)− µi, i ∈ {x, y, z} (3)

3.4 Noise Removal
The multi-level Daubechies orthogonal wavelet (DB6) is

used to remove the noise picked up by the accelerometer such
as bumps and taps on the screen during the data recording
phase. In this study DB6 with level 3 and soft thresholding
given in equation 4 is used to eliminate the noise from the
walk signal. These equations for thresholding the time series
are discussed in [9].

τ = σ(mad)

√
ln(N) (4)

1http://developer.android.com/index.html



Where τ is the threshold and N is the length of the time
series or walk signal.

σ(mad) =
median(|c0|, |c1|, ..., |cn−1

2 − 1|)
0.6745

(5)

Where c0, c1 are the wavelet coefficients ordered by the in-
creasing frequency and σ(mad) is computed over the largest
coefficient spectrum. As explained in [9], The denominator
0.6745 is a scaling factor to make σ(mad) a suitable estimator
for Gaussian white noise.

4. SEGMENTATION
Various approaches to segment the gait walk have been

proposed in previous studies. The two widely used methods
are: i) cycle based segmentation, considering the fact that
human walk is cyclic in nature and the walk is segmented
into the cycles [1,2,7,8], and ii) the fix-length segmentation,
where the walk is segmented into small frames of 3-5 sec-
onds, irrespective of the cycles [8]. In this study we have
used a cycle based approach to segment the walks. Before
segmenting the walks, it is important to find the cycle length
to automatically detect the cycles.

4.1 Cycle Length Estimation
Our cycle length estimation is based upon the approach

presented in [2]. Steps of estimating the cycle length are
given in algorithm 1.

It begins by extracting a small subset of samples around
the center of the walk called reference window and compares
it with the other subsegments of the same size extracted
from that walk. The number of samples in the reference
window must be less than the sampling frequency. In this
study, we have used a reference window of 80 samples.

The comparison of the reference window with other sub-
segments results in a distance vector. From this vector we
find the indices of the minimum distance values and store
them to a minimum index vector. Later we compute a dif-
ference vector which contains the difference of every two ad-
jacent elements of the minimum index vector. Finally, the
cycle length is computed by taking the mode of the differ-
ence vector.

In case if mode does not exist (which means every step
has different length which could happen if an individual is
intentionally changing the walking pace) we compute cycle
length by averaging the values of difference vector.

4.2 Cycle Detection
Cycle detection is based on algorithm 1. It begins by ex-

tracting a small segment (2× estimatedCycleLength) around
the center of the walk as it is the most stable section of the
walk and we find minimum value in this section of the walk.
Sometimes interpolation errors could effect this area of the
walk and we might pick a wrong minimum, to reduce this
risk we used segment size double of the cycle length. By this
we assume to pick two minimas and we start cycle detection
from the index of the most prominent minima and from this
point cycle detection is done in forward and backward di-
rection by adding and subtracting the cycle length. From
our experiments we found that all minimas in the walk do
not occur at equal intervals therefore, we select a small a
offset (0.2 × estimatedCycleLength) area around the found
end point and find minima in that region. Once all minimas
in both direction are found they are called gait cycle starts.

Algorithm 1 Calculate EstimatedCycleLength

1: L := WalkLength {samples in the walk}
2: C := dL

2
e {center point of the walk}

3: N := 80 {samples in the referenceWindow}
4: Start := C − N

2
{first index of the referenceWindow}

5: End := C + N
2
− 1 {last index of the referenceWindow}

6: ReferenceWindow ← walk(Start to End)
7: for i = 1 to L−N do
8: subSegment← walkSignal(i to i+N − 1)
9: D[i] := ED(BaseLine, subSegment) {find Euclidean

distance between referenceWindow and subSegement}
10: end for
11: minima := findMimum(D) {returns indices of local

minimas of distance vector D}
12: Difference := diff(minimas) {returns difference of

every two adjacent elements of minimas vector}
13: if mode(Difference)! = NAN then
14: return cycleLength := mode(Difference)
15: else
16: return cycleLength := average(Difference)
17: end if

All detected gait cycles are normalized to equal length
of 100 samples because distance measure such as Euclidean
only works on equal length data series.

4.3 Omitting Unusual Cycles
Detected cycles are cleaned by deleting unusual cycles

which are shown in figure 3. This is done by computing
the pairwise distance using Dynamic Time Warping (DTW).
Cycles which have a distance of at-least half of the other
cycles are removed [7]. After removing the unusual cycles
a cycle which has minimum distance to all other cycles is
called reference cycle and the rest of the cycles are called
probe cycles. If less than three cycles are remained thresh-
old is raised and process of deleting unusual cycles starts
again until three cycles are remained.
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Figure 3: Gait cycles after removing outliers.

5. RESULTS
Once the Reference and probe cycles are generated they

are compared against each other in order to compute the
intra-class (genuine) and inter-class (impostor) distances by
using the DTW distant metric. Computed distances are
passed to a majority voting module to decide if a walk is



Algorithm 2 GaitCycleStartDetection

1: L := WalkLength {samples in the walk}
2: C := dL

2
e {center point of the walk}

3: subSegmentStart := walkSignal(C − cycleLength)
4: subSegmentStart := walkSignal(C + cycleLength− 1)
5: [minV al, index] = min(subSegment)
6: start := subSegmentStart + index{starting point for

cycle Detection}
7: offSet := 0.2× estimatedCycleLength
8: end := Start+ estimatedCycleLength
9: j := 0

10: minimaIndexForward[j] := start
Forward search

11: while end < L− cycleLength
2

do

12: segment := end− d offSet
2
e to end+ d offSet

2
e

13: [minV al, index] := min(segment)
14: minimaIndex[j] := end− d offSet

2
e

15: end := minimaIndexForward(j) + cycleLength
16: j := j + 1
17: end while

Same way we find minimum indices by moving back-
ward till the start of the walk. then we sort minimaIn-
dexBackward and join it with minimaIndexForward to
have all gait cycle starts.

a genuine or an impostor attempt. If 50% cycles of a walk
have distances lower than the threshold value then the walk
is considered a genuine walk. Table 1 shows the results of
this study and 2 shows results of other studies on this topic.
We have recorded gait data in two different sessions with an
average gap of 25 days. Therefore, we show the same-session
(when reference and probe cycles are from the same ses-
sion walks) and the cross-session (when reference and probe
cycles are from different sessions) performance. Equal Er-
ror Rate (EER) is used as the performance measure in this
study.

Table 1: Same-session and cross-session results.

Placement
Subjects Same-session Cross-session

(EER%) (EER%)

trouser pocket 35 7,051 18.965

Table 2: Comparison of results with other studies, s
stands for same, c for cross and m for mixed session.

Study Placement Subjects Settings Best EER

[3] trouser pocket 25 s 100% CCR
[5] trouser pocket 5 s 100% CCR
[2] waist 48 m 20.1
[7] waist 48 s 16.26
[7] waist 48 c 29.39

6. CONCLUSION AND OUTLOOK
In this paper, we used a biometric gait data-set of 35 par-

ticipants collected under a realistic scenario, by placing the
cell phone inside the trousers right hand side front pocket.
During the walk, the cell phone wobbles inside the pocket.
This introduces orientation error. To compensate these er-
rors we have revisited the data processing steps and used

magnitude data, as well as wavelet based de-noising mod-
ules. We have also used the modified version of a cycle length
estimation algorithm as it is one of the crucial requirements
of automatic cycle detection used here. If we compare re-
sults given in table 1 with previous studies shown in table 2;
we notice an improvement. However, results also indicate a
big difference in same-day and cross-day performance, that
supports the argument that gait varies over the period of
time, therefore, in our future studies we are looking forward
to introduce on-line learning methods to cope with gait ag-
ing factor.

7. ACKNOWLEDGMENTS
This work has been carried out within the scope of u’smile,

the Josef Ressel Center for User-Friendly Secure Mobile En-
vironments. We gratefully acknowledge funding and support
by the Christian Doppler Gesellschaft, A1 Telekom Austria
AG, Drei-Banken-EDV GmbH, LG Nexera Business Solu-
tions AG, and NXP Semiconductors Austria GmbH.

8. REFERENCES
[1] H. Ailisto, M. Lindholm, J. Mäntyjärvi,

E. Vildjiounaite, and S. Mäkelä. Identifying people
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