Anonymously publishing liveness signals with
plausible deniability

0000—0002—2506—2350] , René Mayrhoferl [0000—0003—1566—4646])

and Stefan Ras52 [0000—0003—2821—2489]

Michael Sonntag!!

! Institute of Networks and Security, Johannes Kepler University Linz,
Altenbergerstr. 69, 4040 Linz, Austria
{michael.sonntag,rene.mayrhofer}@ins. jku.at
2 LIT Secure and Correct Systems Lab, Johannes Kepler University Linz,
Altenbergerstr. 69, 4040 Linz, Austria stefan.rass@jku.at

Abstract. Sometimes entities have to prove to others that they are still
alive at a certain point in time, but with the added requirements of
anonymity and plausible deniability; examples for this are whistleblow-
ers or persons in dangerous situations. We propose a system to achieve
this via hash chains and publishing liveness signals on Tor onion services.
Even if one participant is discovered and (made to) cooperate, others still
enjoy plausible deniability. To support arbitrary numbers of provers on
a potentially limited list of online storage services, an additional “key”
distinguishes multiple provers. This key should neither be static nor pre-
dictable to third parties, and provide forward secrecy. We propose both a
derivation from user-memorable passwords and an initial pairing step to
transfer unique key material between prover and verifier. In addition to
describing the protocol, we provide an open source App implementation
and evaluate its performance.

Keywords: liveness - plausible deniability - hash chain

1 Introduction

For their personal safety, whistleblowers® need to prove that they are still alive
to, e.g., prevent a “security package” stashed with a third party from being pub-
lished. Of course, this only works well if the third party (or parties — there may
be multiple) remains unknown to any potential threats for the whistleblowers
themselves. Also, as soon as whistleblowers have been apprehended, their devices
will be investigated and all data extracted. This should not allow to a) identify

3 In this paper we use the term “whistleblower” as a placeholder for any person — or
potentially some process — who may be in possession of confidential material, pub-
licly, politically, militarily, or legally exposed for any reason, or otherwise threatened
in relation to them potentially releasing such information to the public. There are too
many threat scenarios to list exhaustively, which is why we use the commonly known
term whistleblower when implying the general threat model and, synonymously, the
term “prover” when implying the protocol aspects without loss of generality.

2 M. Sonntag et al.

the third party/parties and b) if these are discovered despite all precautions,
they should be able to plausibly deny that they are acting as such third parties.
The same applies in reverse: if a third party is somehow discovered, it should
remain impossible to discover the whistleblower or prove that someone suspected
as that person was connected to this person in any way. While, depending on the
circumstances, mere suspicion of being any party (whistleblower or trusted third
party) might be enough for dire consequences [20,24,13], at least no technical
proof should be possible. We note explicitly that hiding the fact that a party
has been interacting with our proposed service (e.g., but not limited to, having
installed the mobile client app) is outside the scope of this paper.

Such a scheme requires the whistleblower (“prover”) to transmit or publish
some data (“signal”), from which one/several third parties (“verifiers”) can con-
clude the prover was “alive and well” at a certain point in time (e.g. when the
signal was published). To prevent correlation attacks, signals must be published
and retrieved asynchronously, i.e., stored on some publicly accessible location
(typically a website) by the prover, while verifiers ideally access this location as
part of their standard activities (e.g. “visiting some website and viewing con-
tent”). While a storage server for verifying liveness can also store the “security
package” (to be published if the verifier is considered “dead”), it obviously must
be encrypted and solely verifiers should know the decryption key. The storage
server should not simultaneously be a verifier, as then direct and synchronous
communication between them would take place; also trust in this context is typi-
cally something between two persons and not a person and some (potentially very
large) organization. Both sending and verifying signals should look innocent, i.e.,
observing their traffic should not allow anyone to conclude that they are party
to such a scheme. While a prover is typically a single person, one prover might
have several verifiers. These could be e.g. journalists, friends, or representatives
of trustworthy foreign institutions — someone the prover trusts®. At some pre-
vious point a brief secure communication with them is needed (e.g. in person),
but not anymore during the scheme. If one verifier is discovered, not only the
prover but any other verifier should enjoy anonymity and plausible deniability
(see [3] for definitions and kinds) even under the assumption of collusion of all
other participants. Plausible deniability is not a legal term; it should be seen as
the existence of other explanations, which are at least as likely as the actual one,
shifting the burden of proof to the other party. As a minimum, any existing sus-
picion may not be increased through any traces which might be found with full
access to all devices and their forensic examination (i.e. including investigations
touching national security and so enjoying almost unlimited ressources).

To solve this problem, we propose a system based on Tor onion services [5]
combined with hash chains for publishing such signals. The signal itself is solely
a binary flag "I am alive" and has no other content (for a related approach for
signals alone without a verifier secret/considering storage see [21]), so here we
focus solely on the publishing/verification and the storage aspect of the problem.

4 Should this trust be misplaced, deniability gets very important — only the state-
ment/data of that person should be available to attackers, but no other evidence.

Anonymously publishing liveness signals with plausible deniability 3
2 Related Work

The potential issue of whistleblower protection has already been used as the
motivation for very different technical approaches. Time-lock puzzles [18] seem
to have been one of the first proposals suggesting the use of trusted agents to help
with timed information release. More recently, public ledgers were proposed as a
storage mechanism that could release information if heartbeats are not regularly
received (e.g., in CALYPSO [12]). Other solutions to assist whisteblowers are
confidential (in the sense of protecting sender anonymity) document submission
systems such as SecureDrop® [22], which is in use by major newspapers [7],
or anonymous messaging systems like Ricochet [2], Cwtch [17], or others (that
no longer seem to be under active development). Group authentication in such
anonymous messaging settings is even more challenging [4, 23].

Many of these rely on onion routing [6] to hide sender and receiver IP ad-
dresses, particularly on Tor Onion services [26,25], as we also propose here. We
argue that the use of Tor onion services no longer constitutes a proof of suspi-
cion towards potential whistleblowers, as even large-scale services like Facebook
or Twitter now offer access via onion services to work around local network
censorship /monitoring [27,1]. Also, e.g., Cloudflare offers to provide access to
websites hosted by them via onion services: when users connect via Tor to “some-
domain.com” hosted by Cloudflare (and this feature is enabled), they will be
redirected internally to an onion service of this domain [19]. From the secu-
rity /anonymity point of view this changes little, but performance increases and
no external exit-node is involved. Tor users will then use onion services even if
they don’t know the actual onion URL, increasing their utilization. A custom
HTTP header was defined to “redirect” normal traffic to an onion address (which
is much harder to remember) [11] too, for sites hosted in any other manner. When
selecting anonymizing techniques, any method with a small number of users acts
as a signal just through its network traffic patterns, independently of the content
transported through it. Therefore, onion services seem to be the best compromise
for a widely deployed and usable system with reasonable anonymity guarantees,
even though onion service use can be measured at least statistically [10].

Recent research [8] describes how a deniable protocol can be subverted via
remote attestation: through performing the local part of the protocol in a Trusted
Execution Environment (TEE), a non-repudiable transcript can be generated in
an undetectable way, so a party can later prove to third persons that the (then
no longer undeniable) protocol was actually performed by them. However, this
is not applicable to our proposal. We assume that an attacker can "convince"
one (known) party/parties in some manner to cooperate, and therefore “trusts”
them anyway. So moving the calculation of parts of our protocol into a TEE to
attest that it actually took place as claimed has no influence on the deniability
of the other party: the sender does not know whether the recipient even retrieved
the signal and so could only prove that they sent a signal — providing no data
on any potential verifier. On the other hand, the recipient can only prove that

® Available online at https://securedrop.org/

4 M. Sonntag et al.

someone sent a valid signal and they received/verified it, but not who did this.
For an attacker this would only make sense if he could modify the hardware of a
party undetectedly, first having identified them. However, in that case software
modification (trojanizing their device) would be sufficient and produce exactly
the same information: confirmation that the local activity took place, but no
additional information about the other side.

In this paper, we focus specifically on preventing de-anonymization of either a
whistleblower (prover) or people communicating with them (verifiers) regarding
their “liveness”. That is, actual (confidential, integrity-assured, and potentially
authenticated) document or message transmission is out of scope here. However,
we focus on the deniability aspect of locally detectable signals under the assump-
tion that end-user devices of provers or verifiers are captured, which in turn is out
of scope of many of the anonymous messaging or document submission services
mentioned. Our goal is to provide plausible deniability of involvement in a spe-
cific whistleblower process as a certain party (prover or verifier) even for a person
whose device is forensically analysed. Therefore, our scope is especially on the
sending and receiving of liveness signals as one component of a whistleblowing
process and a tool for assisting in the protection of whistleblowers.

3 Possible Alternative Approaches

An alternative solution to the one proposed here could be “classified ads™ on
some public site (e.g. Twitter, Facebook) a code is posted by the prover, telling
verifiers that she/he is still alive. But this approach has several shortcomings:
you need to register to be able to post (which typically means a valid E-Mail
address and some E-Mail communication for account verification; today often a
phone number too) and logging in to send. Depending on the service logins may
be required for checking the existence of a post. Finding them might mean delib-
erately searching for them (= entering keywords). States can easily block or (se-
lectively) delay access to such services generally or for individual users. Removal
by the website (e.g., “only text messages, no binary codes”, complaints/takedown
notices) are an increasing difficulty. Any “technical” signal like a hash value is
obvious as such, easily discovered automatically, and directly tied to a sender,
while “normal” text would either have to be repeated for every signal instance
(=suspicious) or require a complex scheme/external storage for changing con-
tent. Also, the complete message history with start and end date is (usually
publicly, but at least for the service provider) available and easily archived by
third parties for later verification too. In contrast, the presence of a Tor browser,
or e.g., Tails Linux (no installation needed), is much more open to interpretation
and while potentially suspicious for certain regimes, typically not in itself illegal
and not useful to identify past usage patterns or behavior in any case.

Signing a public message by any other person like a recent newspaper article
(could even be randomly selected as long as the source is provided) requires
either a real public key (i.e., identifying the prover) or agreeing with each prover
on a separate keypair. Remembering these is difficult and storing them is also

Anonymously publishing liveness signals with plausible deniability 5

potentially suspicious. Additionally, it immediately discloses the existence of the
scheme and requires larger storage (for providing the source as well as a unique
extract of the message beside the signature). This also doesn’t solve the problem
of the identical storage locations for each such message.

Such a scheme must be solely asynchronous communication or correlation at-
tacks are possible, not only for verifying existing suspicions but with large-scale
monitoring for identifying a — potentially small — subset of candidates for fur-
ther investigation too. Therefore, approaches like double ratchet protocols [15]
are unsuitable, as here no return channel exists. All logical communication must
be solely one-directional from the prover to the verifier. Technically, the prover
contacts the storage location to submit data, and at some later time verifiers
individually contact the same storage location to retrieve it. Any return com-
munication enhances the dangers of discovering an involved person.

4 Proposed Solutions

We propose two solutions, the main one described first and in detail, the possible
alternative (albeit with certain shortcomings) briefly. The signal for this protocol
is assumed to be short, like a single data block of 32—64 bytes, i.e., a hash value.

4.1 Main Solution

To prevent correlation attacks, signals are stored on third-party Tor onion ser-
vices. This ensures transport encryption as well as meta data hiding (at least for
address information if not for statistical traffic analysis) for prover and verifier
when submitting /verifying a signal. If other activities, like web browsing via Tor
(preferably on onion sites), are performed simultaneously, this effectively hides
participation in such a protocol from on-path adversaries, as both submitting
and checking a signal consist only of two (obtain&receive input for proof of work,
submit result of challenge&submit/receive signal) short requests and responses.

Because it might be possible to distinguish normal Tor traffic from onion
service access [14], it is beneficial that signal storage servers at the same time offer
non-related (e.g. web) services through the same endpoint. While other activities
should be performed there, their exact nature and duration is irrelevant: it is
solely important that accessing that onion service does not solely consist of
sending/verifying a signal. Then the traffic will not be easily recognizable as
traffic related to this protocol. If both sides are known (prover or verifier and
storage server), correlation is possible (which works reliably even for Tor [16]),
but then the additional activity again prevents identifying the actions performed
there as part of a liveness scheme — only of accessing this specific onion service.

A storage server can be run by anyone as a public service; a signal itself consist
of only few bytes, so very few resources are needed. Additionally, their actions
are extremely simple: submitting a value for storage or retrieving a specific value.
The only useful attacks are DoS (deleting/modifying signals, thereby rendering
responses invalid) and helping in correlation attacks (disclosing exactly when

6 M. Sonntag et al.

a signal is submitted/queried for or sending too large replies). If the person
performs other activities via Tor on other sites simultaneously, the latter should
not matter. Note that two signals/queries cannot be identified to come from the
same party. As no payment is involved in the protocol, hosting such servers must
be performed as a public service. However, because the demand on the server is
likely minimal (see section 4.1), this can be easily added to other public onion
services, simultaneously taking care of publicizing/obtaining such an onion URL.

To facilitate selection of individual signals, they are associated with a “key”
changing on every signal, i.e. specifically not a static or unique “prover ID”. The
storage server requires some proof of work (PoW) for submitting or retrieving
a signal, e.g. performing some calculation that requires several seconds on a
fast computer. This reduces the danger of DoS attacks through submitting huge
numbers of signals, continuously retrieving them, or attempting to traverse the
key space. A relatively small PoW comparable to intentionally slow derivation
functions like Argon2 (used for verifying passwords) is sufficient here to balance
DoS attacks on signal servers with the load on clients (in addition to the cryp-
tographic requirements for onion connections; when performing other activities
on the storage server as suggested even a 30 second delay for very slow com-
puters would be irrelevant). As this is a challenge/response protocol, even very
strong computational ressources are of limited use: enforcing creation of a new
Tor circuit for every interaction is possible and proves an additional hurdle solely
for attackers. In section 4.1 we give an approximation of the load a single at-
tacker can put on a storage server: very little, so even thousands of simultaneous
attacks are of limited impact (e.g. 1000 attackers only produce 15 GB storage
demand and negligible computational load - challenge generation /verification is
trivial). In case a key is requested for which no data was stored, random data
is generated by the server, stored (= same response on subsequent queries), and
returned. Therefore, anyone querying cannot determine whether a signal had
been submitted under that key or not. No identification is needed for submit-
ting a signal, only completing the PoW. Signals are automatically deleted after
an appropriate period, e.g., a day or a week (delay set by server for everyone
to limit its storage load). Deleting them after the first query is not done, as
an adversary might then discover whether a signal was queried for or not (and
multiple verifiers for a single prover would not work).

As the signal itself is part of the hash chain, the verifier can be sure it was
created by someone knowing the shared secret — i.e. the prover. Note that be-
cause of the direction of the chain, the verifier cannot calculate the “next” signal
from the data they know, so impersonation by a (second) verifier is impossible.

Using multiple storage servers (= multiple onion URLS) enhances resilience.
While a signal could be stored on each of them under the same key, it is advisable
to use different data (and therefore different keys) on each server, as otherwise
querying all of them for a non-existing key will produce different (random) values,
while an existing key would return the same value, disclosing whether a key is
valid or not. The number of storage servers required is determined by the trust
in their continued provision of this service and the duration envisaged for the

Anonymously publishing liveness signals with plausible deniability 7

liveness scheme (trustworthy servers + brief duration = one server). Note that
servers cannot be added later except via an additional secure out-of-band data
exchange. Spare servers, which are only used if the first one is unavailable for
whatever reason, are possible: only their onion URL is required and no data
needs to be shared with them (prover — server or verifier — server) or with
the other parties (between prover and verifiers) regarding them. It is therefore
possible to use servers from a public trusted list accessible to both; however,
accessing the list is a potential sign of involvement.

The storage key is calculated based on a hash chain (see formal description
below): the prover creates a start value and shares this and an additional secret
with one or more trustworthy verifiers. This has to be done securely, but is a
very brief and one-time-only activity before any part of the protocol takes places
electronically and therefore potentially observable for attackers. If this shared
secret is lost, there is no recovery mechanism — a new secret has to be agreed
upon by prover and verifier. Concatenating the start value and the secret and
hashing it twice (in different configuration) produces the next key. This prevents
third parties, which do not know this shared secret, from determining the next
location under which a signal from the same prover will be stored, respectively
looked for, as well as replay attacks.

After successfully verifying a signal, locally stored data is overwritten by new
values, preventing adversaries from obtaining information on previous signals.
The new key data is the result after only a single hashing, so that knowing a
signal key (or simply storing them all and later trying brute-force) does not allow
“calculating” forward even if the shared secret is obtained by an adversary (to
avoid recreating later elements in the chain, the shared secret is appended for the
key data and prepended for the actual key). This approach allows a verifier to
also calculate future keys, even if a (range of) signal(s) was missed. Verification
should consider as many keys as could have been generated up to the current
time (and lost intermediate values) - or until the prover is considered “dead”.

The current key data both parties store is random data from the point of
view of adversaries as it is produced as the output of a hash function®: all binary
values are valid in-/outputs, so it can be easily encrypted with any local value
too. For this we suggest a human-brain only secret (=password) converted via
a Password-Based Key Derivation Function (PBKDF, e.g. Argon2) and XORed
with the key data. In this way, both prover and verifier have to remember a single
shared secret /password and an individual own secret/password not disclosed to
anyone else at any time. Note that disclosing an incorrect password - and its
derived data - cannot be distinguished from those based on the correct one.

The (encrypted) key data stored by the verifier is the base data for the next
key (note that this is not the key as such, as this will be hashed once before
being used; see above), which is different at both parties exactly because of
this encryption. The prover does not store this value; it is calculated only when

5 We currently rely on standard, non-random-oracle hash functions for building the
hash chains of location keys and signals, and therefore do not aim for proofs under
the random oracle model for properties of these chains.

8 M. Sonntag et al.

sending a signal. While the encryption key is the same length as the data, it
includes the verifier’s secret value so it changes on every signal too.

Because of these two elements we argue (without formal proof) that this
fulfills IND-CCA2 as well as being indistinguishable from random noise as no
other data encrypted with the same key is available to an adversary and XOR-
encryption with a key used only once is similar to a one-time pad. The only
difference is that the key in this scheme is the result of a hash function and
therefore not truly random — but depending on the hash algorithm unpre-
dictable enough without the input data. Any reasonably fast one-way derivation
is suitable, especially cryptographic hash functions. As key and verification data
are a single hash value each (e.g. 32 bytes), they can be explained as various
other data because they look purely random and can so easily be incorporated
in arbitrary steganographic schemes. Examples for this are e.g., internal check-
sums of (deliberately) damaged pictures (so no checksum verification is possible
anyway), keys from other applications, or simply data left over on the disk from
previous files. As the prover can designate any two similarly changing values as
his (claimed as such) verification data (or randmly generate such), the data of
both parties looks exactly the same (same count, length, properties). Therefore
a prover can successfully claim to merely be a verifier.

Signal calculation algorithm

Signaly “Random” data of length of hash function output. Random initializa-
tion vector or e.g. H(ProverSecret | SharedSecret) (Fig. 1: Sp; PS Prover-
Secret, SS SharedSecret)

Signal; = H(Signal;; | SharedSecret) (Fig. 1: S;)

Key calculation algorithm

KeyDatan “Random” data of length of hash function output. This is beyond
the “end” of the chain of signals, i.e. a continuation (Fig. 1: KDy = Sy)
KeyData; = H(KeyData;; | SharedSecret) Data for deriving the next key

(Fig. 1: KD;)
Key; = H(SharedSecret | KeyData;) Key for publishing the signal (Fig. 1: K;)

KeyData is used in reverse order, i.e. the first signal (value Signaln.1) uses
KeyDatayn.; resp. Keyn.1. The last possible signal uses Keyg with value Signaly.

Verification algorithm For its stored data, a Verifier takes Sy and SS (ex-
changed with Prover) and calculates these values by adding its own secret data:

VerificationDatayn.; = H(Signaly | VerifierSecret) (Fig. 2: V;; V.S Verifier-
Secret)

KeyDatan_; ¢ = H(Signalyx | SharedSecret) @
Argon2(VerifierSecret | VerificationDatay_1) (Fig. 2: KDx.1)

Verifying signal i ([1...N] in temporally ascending sequence) works as follows:

Anonymously publishing liveness signals with plausible deniability 9

Prover Verifier
Storage Storage
sgﬁé Secure out-of-band transmission: Sy (=KD,), SS Stsanscs
Variable/time-based: e v Variable:
NextSignak V;, KDEne
Recalculated:
S KDK T
s T Server
(s}
= Sp=H(Sy.4|SS)=KD, Storage
5 .S N=H(Sy.1/SS) N ‘l Static: i
3 g K>S ;
© = KDy.1=H(S\|SS! |
[SAS] n1=H(SISS) First Signal |
Sy.4=H(Sy2|SS) Ki.1= H(SS|KDy4) ~—+Publish: Ky 2> Sy |
-
I KDy ,=H(KDy|SS) é
Sn2=H(SySS) Knz= H(SSIKDy2) ————iPublish:Kys > Syp | 2
y s L E
| i i B
T KD;=H(KD,|SS) i g
S1=H(S¢|SS) Ky=H(SS|KD,) -->§Pub|ish: Ky 2> S ks
; ©
N KDy=H(KD4|SS) H £
_ Last possible Signal =
Se=H(PS|SS) Ko= H(SS|KDq) - iPublish:Ky > 8,
Fig. 1. Graphical description of the protocol - Prover part.
KeyDatan.; — KeyDatan.; ¢ S

Argon2(VerifierSecret | VerificationDatay.;)

Keyn.i — H(SharedSecret | KeyDatan.;)

Success? H(H(Signaly; | SharedSecret) | VerifierSecret) == VerificationDatan_

If “Success™ Calculate VerificationDatax.;.;=H(Signaln.; | VerifierSecret) and
store it. Conclude prover to be “alive”. Calculate and store KeyDataN_i_lE“C:
H(KeyDatay.; | SharedSecret) @ Argon2(VerifierSecret | VerificationDatan.i.1)

If “Fail”: Don’t update KeyDatan.i.1®"¢. VerificationDatax.i.; cannot be calcu-
lated anyway, as Signaly.; is unknown. Try again later with identical (re-
trieval problem) or on the next timeslot (incorrect result) updated data:
KeyDatan.i.1 =H(KeyDatay_; | SharedSecret) and Keyn.;.; = H(SharedSecret
| KeyDatan.i-1). Compare then H(H(H(Signalyx_i1 | SharedSecret) | Shared-
Secret) | VerifierSecret) to the previous VerificationDatay.;. If unsuccessful
after a verifier-determined number of tries, conclude the prover to be “dead”.

Data stored by prover

— Onion address(es) of storage server(s) (string or binary value of public key -
hidden or encrypted similar to the current key generation data as described
below; or as well-known, remembered, or bookmarked “harmless” service)

— Shared secret (human memory only). See Fig. 1: SS.

— Prover secret (human memory only) for signal/key generation. Fig. 1: PS.

— The number of the next signal (or some method of deriving it, e.g. through
some starting point in time and the current date/time).

10 M. Sonntag et al.

Prover Verifier
Storage Storage
stsa,nscs: Secure out-of-band transmission: Sy (>:KDN), Ss Stsanscs

Variableftime-based: . Variable:
Vi =HSYS)
ecalculated:

SKD K KDy 4En=H(S|SS) @ A(VS|Viv.1)

Server
Sorage [KDy=KDy £ & AVS|Vy)
et [Ky=H(SSI(KDy))

_rRetrieve Sy, from server at Ky ;
" H(H(Su4|SS)|VS) == Vi ? “Alive” : “Fail*
If “Alive”: .
Viz=H(Sp4|VS)
KDN_ZE”E:H(lKDN_dSS) @ ANVSVia) | Update stored data
If “Fail’:)
Do not update KDy..,£" (can't calculate Vy.5)
Try again at next timeslot:
\ KDy.+=KDyAE" B A(VS|Vy1)
\ KDy 2=H(KDy4|SS)
_ Kuo= H(SS|(KDy2))
*Retrieve Sy, from server at Ky,

“

First Signal |

Publish: Ky.; = Sy

Publish: Ky 2 Sy |

Time of publishing signals

;Publlsh: Ki=> 84 H(H(H(S\2|SS)|SS)|VS) == V. ? “Alive” : “Fail*

H H() ... SHA3-256 (or other hash function)
H _Laﬁt_uuﬁﬁwb\esuna\ : A() ... Argon2 (or other PBKDF)
{Publish:Kyg > 8y ! & ... XOR

Fig. 2. Graphical description of the protocol - Verifier part.

Data stored by verifier

Onion address(es) of storage server(s) (same as above)

— Shared secret (human memory only; same as above). See Fig. 2: SS.

Verifier secret (human memory only; similar to above). See Fig. 2: V'S.

— Current key generation data. Encrypted via XOR with data derived from
verifier secret and verification data during storage and ratcheted forward
after each sending. See Fig. 2: KD; resp. KD;F»¢.

— Verification data for verifying the next signal value. Hash of current signal

and verifier secret. See Fig. 2: V;.

Data stored by onion service operator

— Map[key — signal]: Stored for a fixed duration, e.g., one day/week. For non-
existing keys, random data is generated upon the first query and stored with
the same retention period minus a random reduction to prevent detection of
this fact.” Size per signal: 2 x 64 Bytes + storage overhead. Assuming a 10-
second PoW and one week retention period, a single computer solely sending
random data can produce 60,480 signals; assuming 256 Byte for storage

" This combination of requirements on the storage server make it act as a random
oracle with time-outs or, in another interpretation, a series of random oracles defined
by overlapping epochs. Such a random oracle service might be helpful for other
cryptographic protocols whose security properties depend on a random oracle instead
of standard hash functions for some building blocks. By re-using our proposed storage
service for such other purposes, plausible deniability in communicating with this
service could be significantly improved.

Anonymously publishing liveness signals with plausible deniability 11

(=100%/128 bytes overhead) this translates to 14.8 MB storage wasted by
a single malicious host. The probability of randomly generating exactly the
next key is extremely low (using 1,000 PCs: 60,480,000 tries of a possible
2256 for a 256 bit hash; approx. 1:5.22 * 10~7°); the prover would then be
unable to store the signal, but it is extremely unlikely this will affect the next
key again. When tolerating at least one missing signal no problem occurs.

— Secret data for generating/validating proof-of-work challenges.

— Temporary session data for a duration slightly longer than the maximum
delay for completing the proof-of-work.

Length of data to be remembered For both prover and verifier two data
elements should be stored solely in memory. But how long do these need to
be (as humans are notoriously bad at remembering long random data)? The
algorithm doesn’t require a specific length, as they either serve as (part of) input
to a hash function or are (preferably) used with a PBKDF. Consequently, any
format /length is fine, as long as it is hard to discover via brute force attacks.
They are equivalent to passwords, with all their problems and advantages: a
short uncommon string is sufficient, as is a longer phrase of common words.

4.2 Alternative Solution

An alternative solution is to not store a fixed onion URL and employ varying
keys, but rather generate a new onion URL — and therefore onion service —
for each signal to replace the key. This allows to trivially swap storage servers:
every hoster of the previous scheme can easily provide arbitrary additional tiny
onion services with reasonable overhead [9]. Hosting an onion service for others
is in this case harmless: it solely provides a single short static value upon every
possible request (no other content, no input parsing, etc). Using hierarchical
encryption, from an initial private key and incorporating some secret data more
private keys can be derived similar to a hash chain. Interestingly it is also possible
with knowing solely the public key (and the secret data) to derive the matching
public keys too. This technique is already used in onion services (v3) to mask
the data sent to the hidden service directory (blinded keys [25]). However, each
private key would have to be disclosed to the storage server as it is needed
for operating the onion service. So the storage server cannot calculate the next
keypair(s), the shared secret must be integrated in the key derivation (similar to
deriving the keys from the keydata chain). This shared secret must be protected
individually by each party (see above), as discovering it stored at both locations
removes plausible deniability. As it is needed in cleartext for the calculations,
hashing it for storage is impossible; but encryption works.

A deficiency of this approach is that, when performing hierarchical key deriva-
tion with Elliptic-Curve (EC) cryptography, the private key can be selected ar-
bitrarily, but not the public key. So encrypting the private key by XOR with a
random /secret value is possible and it still remains a “valid” private key. This is
necessary for plausible deniability: disclosing an incorrect secret value still pro-
duces a valid private key (just without any other party). Because if private key

12 M. Sonntag et al.

and shared secret are stored in clear or disclosed by the prover — and so obtained
by an adversary — the matching public key (and all future derived keypairs) can
trivially be computed. If such a public key is found by an adversary at a suspect,
the verifier role can no longer be denied. Unfortunately, masking similar to the
prover is impossible for the verifier, as unlike the private key the public key for
an EC cryptosystem can be verified: not all possible values are valid public keys.
So a transformation is needed taking a valid public key and encrypting it so
that it can be decrypted with two different arbitrary data (e.g. two passwords)
resulting in two valid public keys (the second used for deniability). This could
be achieved via deniable encryption and an arbitrary other public key as decoy.
However, this still requires the decoy to point to a working onion service or be
immediately recognizable as such. So the storage location would have to know
that decoy private key, too. To be indistinguishable from the real key, it must be
changed according to an identical schedule, so the verifier would have to act as
a fake prover in this regard and initiate the decoy onion service creation. Still,
prover and verifier are not as symmetric as a prover now stores one private key,
and a verifier two public ones: a prover cannot as easily claim to be a verifier,
as the private key will typically not validate successfully as a public key either.®

Another issue is that, if the prover is discovered and cooperates, future onion
URLs can be calculated and hosted by the adversary as opposed by third parties
in the previous scheme. The adversary can then much more easily (knowing the
onion URLs of the third-party storage servers in the first scheme still requires
discovering their physical locations before monitoring is possible) check whether
someone attempts to verify liveness (— did the prover lie?) and obtains control
over the process (— correlation attacks against suspected verifiers). Discovering
the verifier does not allow such attacks, as while the public key alone does allow
to pre-calculate the onion addresses, these will not be active earlier and, because
of lack of the private key, cannot be impersonated or located in advance.

5 Limitations and Discussion

5.1 Limitations

Some limitations of this approach exist. Namely, the presence of the software
needed for the scheme is a sign someone participates in it. This could be re-
solved by including it in a “standard installation”, i.e., lots of persons possessing
this software, but only few actually using it. Dedicated secure messaging apps
like Signal seem like an optimal avenue to include such additional functions by
default for the benefit of endangered minorities. The code required is minimal, so
usability would be the main concern. Forensic investigations may provide traces,
whether some executable was run or not, so direct inclusion is preferable over
adding it as “extension” or “module”. Moving the software online is a bad idea, as
this requires disclosing the secret (=human memory only) data to another party.

8 So two public key decoys are needed, for which the prover must initiate onion creation
too, and the verifier needs an arbitrary fake private key.

Anonymously publishing liveness signals with plausible deniability 13

However, providing it on a webpage (— no local software installation), e.g. as
JavaScript, to be executed locally would work. This needs trust in the hoster
and the transmission path that the downloaded program does not perform any
other activities like sending data/keys to anyone. Securing the transmission is
easy (— TLS), leaving how to recognize and trust the site. Manual verification of
the software against a well-known hash value is possible, but not user-friendly,
as is verifying some custom added signature. Storing the data in browser lo-
cal storage immediately discloses participation in the scheme, as then there is
no reasonable alternative explanation. The obvious approach, hosting it on the
onion service used to store signals, is not necessarily secure: as a hoster providing
storage few attacks are “interesting” (see above) and little trust in it is needed.
Potentially trusting them with the keys and all private information is a much
larger question. But approaches like binary transparency for web server content
may be a future mitigation. Local caching after verification is the equivalent of
a local installation and is detrimental to deniability. So if no local installation
is acceptable, some trusted website (to avoid raising suspicion an onion service,
not the public Internet) for hosting the software is required.

Another limitation is that all parties need to store the onion URL(s) of
the storage server(s) (identical for each pair of prover/verifier), and because
of the length/format this can hardly be done in human memory. If an onion
URL solely provides a liveness service as described here, discovering the URL
abolishes plausible deniability of participating in such a scheme. If an onion
service provides other widely-used services, e.g., a normal webserver with legal
and widely interesting content, the presence is much less of an evidence and
could then even be stored as a bookmark. Candidates for including liveness
storage services are e.g. secure drop sites that are already available as onion
services at major news outlets (potentially problematic: also “undesirable” sites
for adversaries interested in unmasking provers) or even public services like news
outlets or social networks.

5.2 Plausible Deniability Achieved?

We now look at various scenarios to determine whether plausible deniability
actually exists under the proposed scheme. We assume one party is fully cooper-
ative (because of bribes, torture etc) so the adversary obtains access to all their
locally stored data, and either provides correct secrets from memory — or lies.
Can such a lie be detected, and what does this imply for the other party /parties?

— Prover is “cooperative” and provides all secrets correctly, including memo-
rized ones: The adversary obtains access to the initialization data and can
calculate all keys for the future with the shared secret. But none of this data
is found at a suspected verifier, as there the key data is encrypted with a
secret solely known to this verifier, and the shared secret is stored solely in
human memory. The last key data of the suspected verifier can therefore be
anything else or relate to a different prover. Lying about the verifier key or
the shared secret produces keys indistinguishable from the ones used in the

14

M. Sonntag et al.

past and that can also be retrieved (as they are considered “valid” by the
respective server(s)), but which cannot be successfully verified as a signal.
So either the (fake) prover is no longer active, the verifier lied, or the data
found is not related to such a scheme at all. Which case it is cannot be
decided based on available data and all options are at least possible. As old
key generation values cannot be generated (preimage attacks on the hash are
assumed to be impractical) and are not stored, it cannot be proven that no
previous values were valid keys or validated successfully. Even if all (globally
observed) old keys and signals are known (e.g., stored for future validation;
storage server cooperates/is the adversary), these cannot be used to gen-
erate later keys, preventing the adversary from proving no “old” but valid
signals ever existed. As future keys are known through the prover, correlation
attacks might be possible regarding suspected verifiers, but as the commu-
nication is asynchronous this requires locating the onion server, as without
access to it, it is impossible to determine whether this server is accessed.

Prover is “cooperative” but lies about the shared and/or prover secret: The
adversary can calculate all (wrong) keys for the future, but nobody is going
to check them — but this cannot be detected by an adversary. If this can
be verified (the adversary controls the storage service or it cooperates), the
prover can no longer deny that they are lying, but only if done quickly;
otherwise, verifiers might already have concluded the prover as no longer
active and do not check any longer.

Verifier is “cooperative” and provides all secrets correctly: This is symmetric
to the prover. Future keys can be calculated, but this data is not found at
a suspected prover. However, working together with the storage service —
after it being located — would allow correlation attacks (but nothing else).

Verifier is “cooperative” but lies about the shared or verifier secret: The
adversary can calculate (incorrect) future keys and query for them, but none
can be verified successfully. Whether the prover is no longer active, stopped
publishing signals for other reasons, or the verifier lied cannot be discerned.

If a prover is found and all physically stored data is available, they can still
claim to merely be a verifier: any arbitrary data can be designated as the
variable verification and key data a verifier stores. The only limitation of
plausible deniability is that no future “signal” can be successfully validated,
so the (imaginary) “prover” is considered no longer active. Note that old
keys/signals cannot be generated from this data in any case, so any past
data stored by an adversary cannot be used for validation.

If a verifier is found and all physically stored data is available, they can claim
to be a prover (if desirable): they can designate the current key generation
data as the initial data, producing a correct but unused hash chain. That
there is no verifier validating these is again impossible to determine without
timely collusion of the storage server. The only limitation is that the verifi-
cation data may not be discernible as such and can be explained as unrelated
— which should be possible for all the data.

Anonymously publishing liveness signals with plausible deniability 15

5.3 Performance Evaluation

Using a prototype implementation of the protocol in Java, we measure the prac-
tical runtime overhead of creating and verifying signals on the client respectively
server sides. Both were executed on a (today comparatively slow) PC with Core
i5-2400 CPU (3.1 GHz) running Windows 10. We ignore the webserver here, as
that would require a PoW for the client, skewing the results enormously.

We measure execution speed after warm-up of the Java runtime by execut-
ing at least 10 similar operations (calculating the first signal with 1,000,000
potential signals as well as verifying) in the same instance before starting the
measurements, which are executed 100 times for averaging measurement noise
on the test systems. Calculating the initialization data (i.e., calculating the full
signal chain up plus a single additional hash to obtain the initialization data
to be shared with the verifier) takes on average 1.4 seconds. Verifying a signal
requires approx. 9 ms (most of this probably test overhead, as very few hashes
need to be calculated). Producing the last signal takes a bit longer, as the hash
chain must be calculated up to the first signal, and then down again to obtain
the last key data: 2.6 seconds. This seems reasonable, especially when consider-
ing that few application will require a million potential signals. Reducing this
to 10,000 signals, the duration drops to 13/27 ms for generation and 8 ms for
validation (=unchanged; independent of potential signal count), which should
not be problematic even for slow computers.

5.4 Prototype App Implementation

A prototypical implementation of the whole end-to-end user interaction process
in the form of an Android app accessing the fully implemented prototype web-
server is available as open source at https://github.com/rmayr/livenesssignal-
android. The app implements both prover and verifier roles and only stores data
as described in the protocol above permanently on-device, protected with the
local app password. Passwords need to be entered on every invocation of the app
(sending or checking) and are not stored permanently.

To test the app and allow other researchers easy experimentation, a first in-
stance of our prototype webserver for hosting signals is available at
http://fngbmhuck2n7l4we2egjnbpbldcofwd6wjyviTt6s37uhwbcanmylyqd.onion /liveness
This instance can be used by the general public, but may be subject to future
restrictions depending on resource considerations. However, as described above,
in the absence of explicit DoS attacks, typical use of such a service should only
result in insignificant system load in the sense of computation, storage, and data
transfer requirements.

6 Conclusion

We provide a system for publishing liveness signals with plausible deniability:
even if some participant of such a scheme is discovered, others can still plausi-
bly deny their involvement or claim the opposite role. Two drawbacks are that

16 M. Sonntag et al.

possession of the software necessary for the scheme might provide a hint to par-
ticipation, and that a third party is needed to host/publish signals. These are
issues of our prototype implementation and could be overcome by a) integrating
our liveness verification protocol into well-known apps or as a web page and
b) hosting of storage servers by well-known web hosts. The system is easy to
implement, fast, and fulfills all our requirements for anonymity and security.

Acknowledgments This work has been carried out within the scope of Digi-
dow, the Christian Doppler Laboratory for Private Digital Authentication in
the Physical World. We gratefully acknowledge financial support by the Aus-
trian Federal Ministry for Digital and Economic Affairs, the National Foundation
for Research, Technology and Development and the Christian Doppler Research
Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler Univer-
sititsklinikum GmbH, NXP Semiconductors Austria GmbH, and Osterreichische
Staatsdruckerei GmbH.

References

1. A Muffett: On behalf of Q@Twitter, I am delighted
to announce their new @TorProject onion service, at:.
https://twitter.com/AlecMuffett /status/1501282223009542151

2. Brooks, J.: Ricochet. https://ricochet.im/

3. Celj, S., Symeonidis, I: The current state of de-
nial. Privacy Enhancing Technologies Symposium (2020),
https://petsymposium.org/2020 /files/hotpets/The current state of denial.pdf

4. Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous group messag-
ing. In: Proceedings of the 17th ACM Conference on Computer and Com-
munications Security. p. 340-350. CCS ’10, Association for Computing Ma-
chinery, New York, NY, USA (2010). https://doi.org/10.1145/1866307.1866346,
https://doi.org/10.1145/1866307.1866346

5. Dingledine, R.: Next Generation Tor Onion Services. DEF CON 25 (2017)

6. Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of the
ACM 42(2), 39-41 (1999)

7. Guardian, T.: The guardian securedrop. https://www.theguardian.com/securedrop

8. Gunn, L.J.,, Parra, R.V., Asokan, N.: Circumventing cryptographic deni-
ability with remote attestation. Proceedings on Privacy Enhancing Tech-
nologies 2019(3), 350-369 (2019). https://doi.org/doi:10.2478 /popets-2019-0051,
https://doi.org/10.2478 /popets-2019-0051

9. Holler, T., Raab, T., Roland, M., Mayrhofer, R.: On the feasibility of short-lived
dynamic onion services. In: 2021 IEEE Security and Privacy Workshops (SPW).
pp. 25-30. IEEE (May 2021). https://doi.org/10.1109/SPW53761.2021.0001

10. Holler, T., Roland, M., Mayrhofer; R.: On the state of V3 onion services.
In: Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open
Communications on the Internet (FOCI ’21). pp. 50-56. ACM (Aug 2021).
https://doi.org/10.1145/3473604.3474565

11. Kadianakis, G.: Onion-location. https://gitweb.torproject.org/tor-browser-
spec.git/tree/proposals/100-onion-location-header.txt

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.
23.

24.

25.

26.
27.

Anonymously publishing liveness signals with plausible deniability 17

Kokoris-Kogias, E., Alp, E.C., Gasser, L., Jovanovic, P., Syta, E., Ford, B.: Calypso:
Private data management for decentralized ledgers. Cryptology ePrint Archive,
Report 2018/209 (2018), https://ia.cr/2018,/209

Kumagai, J.: The whistle-blower’s dilemma. IEEE Spectrum (Apr 2004),
https://spectrum.ieee.org/the-whistleblowers-dilemma

Kwon, A., AlSabah, M., Lazar, D., Dacier, M., Devadas, S.: Cir-
cuit fingerprinting attacks: Passive deanonymization of tor hidden
services. In: 24th USENIX Security Symposium (USENIX Secu-
rity 15). pp. 287-302. USENIX Association, Washington, D.C. (Aug

2015), https://www.usenix.org/conference/usenixsecurityl5/technical-
sessions/presentation/kwon
Marlinspike, M.: The double ratchet algorithm.

https://signal.org/docs/specifications/doubleratchet/

Nasr, M., Bahramali, A., Houmansadr, A.: DeepCorr: Strong Flow
Correlation Attacks on Tor Using Deep Learning. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM (jan 2018). https://doi.org/10.1145/3243734.3243824,
https://doi.org/10.1145.3243734.3243824

Open Privacy Research Society: cwtch. https://cwtch.im/

Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep. (1996)

Sayrafi, M.: Introducing the cloudflare onion service.
https://blog.cloudflare.com/cloudflare-onion-service/ (09 2018)

Snowden, E.: Permanent Record. Pan Macmillan (Sept 2019)

Sonntag, M.: Anonymous proof of liveness. In: Proc. IDIMT-2021. Trauner Verlag
(2021)

Swartz, A.: Securedrop. https://github.com/freedomofpress/securedrop

Syta, E., Peterson, B., Wolinsky, D.I., Fischer, M., Ford, B.: Deniable anonymous
group authentication. Tech. Rep. YALEU/DCS/TR-1486, Yale University (Febru-
ary 2014)

Tate, J.: Bradley Manning sentenced to 35 years in
WikiLeaks case. Washington Post, online archived at

https://web.archive.org/web/20130825043050/http://articles.washingtonpost.com/2013-

08-21/world/41431547 1 bradley-manning-david-coombs-pretrial-confinement
(Aug 2013)

The Tor Project: Tor Rendezvous Specification - Version 3.
https://github.com/torproject/torspec/blob/master /rend-spec-v3.txt

Tor Project, I.: The Tor project. https://www.torproject.org/ (2021)

W. Hoffman: Facebook’s Dark Web .Onion Site Reaches 1 Million Monthly
Tor Users. https://www.inverse.com/article/14672-facebook-s-dark-web-onion-
site-reaches-1-million-monthly-tor-users

