
Towards an Open Source Toolkit for Ubiquitous Device Authentication

Rene Mayrhofer
Lancaster University

Computing Department
Infolab21, Lancaster LA1 4WA, UK

rene@comp.lancs.ac.uk

Abstract

Most authentication protocols designed for ubiquitous
computing environments try to solve the problem of intu-
itive, scalable, secure authentication of wireless communi-
cation. Due to the diversity of requirements, protocols tend
to be implemented within specific research prototypes and
can not be used easily in other applications. We propose to
develop a common toolkit for ubiquitous device authentica-
tion to foster wide usability of research results. This paper
outlines design goals and presents a first, freely available
implementation.

1. Introduction

Needs for authentication in ubiquitous computing en-
vironments are as diverse as the applications. They may
need to authenticate users or other devices, either after
an identification within some system-wide naming scheme,
pseudonomously, or sometimes even anonymously, with the
communication partners being identified by no more than
their network addresses. Anticipating the growing impor-
tance of personal devices like mobile phones in interacting
with the environment, we focus on device-to-device com-
munication during spontaneous interaction. This kind of au-
thentication, either with identified subjects or anonymously,
provides a good compromise between security, scalability,
and privacy. A user can authenticate to her/his personal
device the moment it is activated, e.g. with passwords or
biometric schemes, and then use this trusted device to in-
teract with others. As such ad-hoc encounters are expected
to be numerous throughout the day, authentication needs to
be handled in an efficient manner, and be as unobtrusive as
possible.

Context based authentication, that is, authentication
based on certain properties of the user or device context,
promises efficient, secure, and most importantly intuitive
authentication methods (see e.g. [4, 5, 6, 9, 10, 11, 12, 13,

14]). The last point is especially important, because secu-
rity measures are frequently disabled if they are not usable
enough but get in the way of user’s daily jobs. One example
for using context is authentication based on spatial refer-
ence: by using a positioning system, devices can measure
their spatial positions relative to each other. A visualised
map can be used select devices to interact with. This is
intuitive, and users can directly verify the spatial relation-
ship, in contrast to purely wireless communication. We can
construct secure device-to-device authentication out of this
intuitive user interaction by coupling wireless communica-
tion with spatial sensing, using well-known cryptographic
primitives.

However, context based authentication is a new research
topic, and implementations of such protocols thus tend to be
very application-specific. Currently, authenticating wireless
communication in ubiquitous computing applications needs
to be designed and implemented for each application. More
often than not, it is therefore left out of research prototypes,
to be “added later”, because security is hardly the research
focus of many of these projects. But practical experience
shows, and handbooks insistently suggest [7], that security
needs to be a requirement from the start; fitting it later on
top of an existing system does not work in most instances.
Re-usable hard- and software components are required that
can be treated as black boxes from the developer’s point of
view to make it easier for applications to benefit from the
advantages of context based authentication.

In this paper, we define our design goals for a ubiqui-
tous authentication software toolkit and present a first im-
plementation. The main contribution of this toolkit is the
combination of cryptographic protocols with sensor data to
create context based authentication. It provides lower-level
primitives and higher-level context authentication protocols
in the same way as the OpenSSL toolkit [1] provides cryp-
tographic algorithms and an SSL/TLS implementation. Our
approach is to rely on simple, standardised, off-the-shelf
and therefore cheap sensors and provide software compo-
nents to use them for authentication purposes.



This toolkit is part of ongoing research and will be ex-
tended to include new developments. Three projects for
device-to-device authentication with different sensors al-
ready make use of it, and we expect more projects to follow.

Section 2 analyses requirements for such a toolkit, fol-
lowed by a brief comparison of different software platforms
for its implementation in section 3. Section 4 gives an
overview of the current implementation and its availabil-
ity, and in section 5 we provide a brief overview of projects
making use of it.

2. Design goals

The main functional requirement for the authentication
toolkit is to provide methods for creating shared secrets
between two (or multiple) devices. These secrets should
be authenticated to prevent man-in-the-middle (MITM) at-
tacks. Authentication between personal devices and the en-
vironment is difficult, because such devices are small, mo-
bile, and typically have limited resources. The absence of
large screens and efficient input devices makes authentica-
tion based on sensor information even more attractive. Dif-
ferent applications require different sensor modalities for
interaction as well as different levels of security. Therefore,
a toolkit, i.e. a collection of loosely coupled components,
is better suited to fulfil those different needs than a frame-
work that implements the complete program flow and offers
only defined hooks for application behaviour. For adding
authentication to applications, it is easier to select and com-
bine provided components than to make the application fit a
pre-defined structure. Following this general design choice,
we identify more detailed non-functional requirements. The
toolkit should be:

• lightweight: Resources on mobile, battery-powered
devices are generally sparse. This includes storage and
run-time memory, CPU, communication bandwidth,
but also battery lifetime, input/output devices, and user
attention. A toolkit should be as small as reasonably
possible, use static memory buffers when possible, and
minimise communication. These aims are conflicting,
and when no generally acceptable compromise can be
found in some case, the respective components should
be parameterisable for application developers.

• self-contained: Devices and platforms where the
toolkit might be used are expected to be extremely di-
verse. Therefore, we can not depend on specific li-
braries to be available. Any dependencies that are not
included in the default platforms should be included in
the toolkit.

• simple to use: An authentication toolkit is most use-
ful if it can be used without great care on the side of

application developers. This has two reasons: if it is
too complex to learn, developers will not use it for
simple applications, and if it is complex to use, it is
likely that it will be used erroneously and thus inse-
curely. Ideally, the various components of the toolkit
can be used as black boxes with simple interfaces, and
can be combined with each other and with application-
specific hooks to build secure context authentication
protocols without knowing about the internals. We
therefore explicitly minimise the number of exported
options, and focus on reasonable default values and au-
tomatic parameterisation whenever possible.

• extensible: It is obvious that a toolkit should be easily
extensible by additional components. When designing
it as a collection of related and compatible, but separa-
ble components, this goal should be automatically ful-
filled, in contrast to framework-type design structures
where extensibility must be explicitly considered.

• vertical: As context based authentication concerns all
layers from sensing hardware, input/output devices,
networking, application context, up to user interac-
tion, a toolkit should provide components that span
the layers. High-level components that relate to com-
plete use-cases can make use of primitives from vari-
ous lower-level layers.

• interoperable: Ubiquitous computing environments
are inherently heterogeneous. Authentication proto-
cols therefore need to be interoperable between differ-
ent platforms. Thus, network communication should
either be based on standardised protocols (e.g. IETF
RFCs) or use simple ASCII line based protocols in the
spirit of SMTP, HTTP, and others.

Implementation issues are mainly that the toolkit must be
secure and that it needs to work asynchronously. Making a
system secure is hard to achieve in the general case, because
the security of a system depends on all of its components.
The weakest parts will most likely be outside the toolkit.
Nonetheless, the toolkit itself should be written carefully to
protect against known and mitigate future attacks. This in-
cludes systematic protection against overflow attacks, pre-
and post-condition checks for all methods, sanity checks for
internal consistency, and wiping cryptographic key material
from memory as soon as it is no longer required (see e.g. [7]
for a more detailed introduction into the topic of secure pro-
gramming). Especially the last point can be tricky to imple-
ment with run-time platforms like a JVM (Java virtual ma-
chine) or a .NET CLR (common language runtime). In ad-
dition to these standard best practises, “defensive” program-
ming techniques demand checking every input value syntac-
tically, semantically, and for the context/state in which it is
read. This includes validating received network packets and



direct user input, but, in contrast to typical desktop applica-
tions, also sensor values, which might be tampered with as
well.

The second issue is to deal with asynchronous program
flows. An event based structure has two advantages over
the standard blocking procedure calls: First, authentication
methods are likely to cause noticeable delays while engag-
ing in wireless communication or waiting for user or sensor
input. Instead of forcing all applications to deal with this
issue, it is simpler to provide asynchronous callbacks for
all actions that delay a program flow. Second, reacting to
events and switching hardware components to standby or
sleeping modes in between can be used as an effective way
of saving battery power (see e.g. the design of TinyOS [3]).

Finally, a toolkit is most useful when it is released un-
der a license liberal enough to allow linking in all cases,
both for other open source and for proprietary, closed source
applications. The GNU General Public License (GPL) is
problematic in this respect, because it does not allow link-
ing with components that are not released under the same
license.

3. Platform choices

As already mentioned, we expect a very heterogeneous
range of devices to make use of context authentication.
Consequently, no single software platform can be the base
for supporting all of these systems. We briefly evaluate the
most common platforms that promise to be supported on a
large range of devices.

Java The Java platform, i.e. the programming language
and the virtual machine (JVM), is becoming increas-
ingly well supported by off-the-shelf devices. This
includes laptop/desktop systems, PDAs, many newer
mobile phones, industrial and embedded devices, and
some consumer devices like upcoming Blue-ray play-
ers. Most of the resource limited devices do not pro-
vide the complete runtime library and language fea-
tures, but only a subset called J2ME. From a security
point of view, there are advantages and disadvantages:
on the one hand, memory management embedded into
the runtime makes buffer overflows harder to trigger,
but at the same time it allows less control in terms of
managing key material in memory.

.NET With similar goals to Java, .NET provides its own
equivalent to the virtual machine (the CLR) and run-
time components with memory management, but with
the benefit of supporting multiple languages. It is sup-
ported on laptop/desktop systems and less commonly
on PDAs and mobile phones. The .NET runtime seems
to have neither particular advantages nor disadvan-
tages over Java in terms of security.

C++ This is not a platform in the same sense as Java and
.NET, but libraries like Boost allow cross-platform de-
velopment. The main use of C++ in our target range
of devices is Symbian OS, which is currently used on
the majority of reasonably powerful mobile phones.
C++ allows in-depth control of memory management
and supports automatic wiping of key material by de-
structors and stack unwinding. It is also regarded as
more lightweight than both Java and .NET, especially
in terms of run-time memory consumption. However,
experience shows that buffer overflows are a major is-
sue with C and C++.

TinyOS Finally, many sensor nodes used in research
projects run TinyOS [3] as their platform. It uses a
dialect of C as its language, and compiles the whole
firmware into one statically linked binary. Owing
to the restricted CPUs that most sensor nodes use,
TinyOS does not support dynamic memory manage-
ment, and is thus expected to have slightly fewer vec-
tors for buffer overflow attacks. On the other hand,
cryptographic operations are expensive in terms of
CPU consumption and battery lifetime, so program-
ming on TinyOS poses different challenges than the
other platforms.

The toolkit as a collection of algorithms is necessarily
dependent on the target platform. Ideally, the toolkit should
be ported to all above platforms, because all are widely used
for devices we envisage to make use of context authentica-
tion. Authentication protocols should be interoperable be-
tween the different platforms, even if implementations dif-
fer. The key point is that the components should look the
same to application developers, abstracting from possibly
significant platform differences.

At the moment, we concentrate on Java with J2ME com-
patibility to support many mobile platforms in the first re-
lease. A port to .NET should include the complete function-
ality, while implementations for Symbian OS and TinyOS
might use only selected components due to resource con-
straints.

4. Current implementation

Our current implementation contains components on the
layers of cryptographic primitives, key agreement and au-
thentication protocols, secure channels, and dealing with
sensor data. Fig. 1 gives an overview of the dependencies
between the components in different layers. These layers
include the following specific components at the time of this
writing:

Cryptographic primitives Implementations of ciphers,
secure hashes, etc. are widely available, even as part



Cryptographic
primitives

Communication
channels

Key management

Context authentication

Sensors

Secure
channels

Figure 1. Interactions between components
of different layers of the toolkit

of newer Java 2 runtimes (generally starting with ver-
sion 1.4). However, this so-called Java cryptography
extension (JCE) has not yet been included in the J2ME
standard that is supported by most Java implementa-
tions on small, mobile devices. To fulfil the goal of be-
ing self-contained, the toolkit therefore uses wrappers
around the JCE algorithms where necessary, and in-
cludes alternative implementations from the Bouncy-
castle cryptographic library [2]. When JCE is not sup-
ported on a target platform, the toolkit can use these as
a fallback, albeit typically with slightly worse perfor-
mance due to missing native implementations. Classes
from Bouncycastle are also used to augment JCE prim-
itives where they lack higher-level support.

On top of these primitives, we add small wrapper and
utility classes that make the underlying algorithms as
simple to use as possible. One notable example is a
class to create X.509 certificates on-the-fly, for the pur-
pose of using standard protocols like TLS.

Communication channels Java already offers good sup-
port for working with TCP or UDP connections. The
toolkit again adds utility classes for simplifying setup
and use of these protocols for standard cases, e.g. a
threaded TCP server that listens in the background
and starts key agreement protocols upon connection, or
UDP multicast sockets for point-to-multipoint authen-
tication protocols. These classes generally take care of
low level details like binding to every network inter-
face that has been found on the device without show-
ing this complexity, to fulfil the goal of being simple
to use.

Key management protocols This layer uses crypto-
graphic primitives and communication channels to
provide simple key agreement protocols. One example
is a standard, unauthenticated Diffie-Hellman (DH)
key agreement over TCP connections with an ASCII
based protocol. Another protocol is just being cre-
ated, and will interactively create cryptographic key

material from sensor data streams, with either UDP
multicast or Bluetooth communication. Additional
candidates for this layer that have recently been
proposed are the MANA family of protocols [8],
a variant proposed by Wong and Stajano [20], and
SAS [18]. Key management protocols for multi-party
settings like the one proposed by Wacker et al. [19]
and trust delegation protocols like the token based
approach by Steffen and Knorr [17] also belong to this
layer of components. We expect some of these and
other protocols to be added to the toolkit in the future,
with a common basic structure to make them simple
to combine or exchange.

Sensors and feature extractors Dealing with sensor data
is an important part for context authentication; this in-
cludes interfacing to the hardware sensors for data ac-
quisition, handling of time series, and extracting ap-
propriate features. The toolkit focuses on ease of use
and automatic parametrisation, but exposes the param-
eters to applications when reasonable defaults can not
be set. Currently, we provide base classes for reading
data from ASCII based sources, simple Bluetooth RF-
COMM channel access via the JSR82 API, computing
time series statistics, time series aggregation, and seg-
menting time series based on a simple activity detec-
tion. An FFT implementation and a quantizer support
feature extraction. All of these classes are optimised
for real-time processing on resource limited devices.

Context authentication protocols Components on this
layer tie together key agreement and authentication
based on sensor data to create context authentication
protocols. The result of a successful execution of one
of these protocols is an authenticated secret shared key
that can be used by applications. Protocols for authen-
tication based on spatial reference and on common mo-
tion patterns are already available in the toolkit.

Secure channels The last layer implements secure com-
munication channels, preferably based on standard
protocols. These protocols generally depend on ei-
ther trusted third parties, which can not be realistically
assumed for ubiquitous computing environments, or
shared secrets, as e.g. generated by components of the
context authentication protocols layer. Currently, the
toolkit provides wrappers for managing IPSec chan-
nels with operating system support. This has been
implemented for Linux (with FreeS/WAN, Openswan,
strongSwan, or racoon), Windows 2000/XP, and Mac
OS X (with racoon), either using X.509 certificates or
PSKs (pre shared keys). We also intend to provide a
secure channel implementation based on TLS-PSK as
an alternative to IPSec.



All key agreement and authentication protocols are event
based and executed in the background. Three types of
events can be generated: success (with the resulting shared
secret key embedded into the event), failure (with a message
giving reason for the failure), and progress (optionally with
indication of how many steps have been finished and how
many are left). These events can be used to provide user
feedback in applications.

The Log4j framework is used for run-time configurable
logging and JUnit for an extensive set of unit tests. Test
cases cover single components as well as combinations
spanning multiple layers, and special tests including real-
world data samples for the context authentication protocols.
Additional utility classes are used for defensive and fail-safe
programming, like a ”safety belt” timer used to terminate
authentication protocols after timeouts.

Developers can use components simply by adding the
single JAR file (or only the required components if program
size is an issue) and using the provided classes. Appli-
cations only need to implement a single interface to pro-
cess standard authentication events as described above. Al-
though applications are free to use components from all lay-
ers, the two top layers are expected to be the most useful:
context authentication protocols provide secret, authenti-
cated key material which can then be used by secure chan-
nels components for securing the actual communication be-
tween devices.

Extending the toolkit with new components is similarly
simple: there is no central structure that needs to be fol-
lowed for every part, nor are there main interfaces that must
be implemented. The toolkit provides some basic infras-
tructure, and extensions are free to use it. Its design loosely
follows the principle of UNIX command line tools: to com-
bine components with simple interfaces into more complex
parts. When no suitable context authentication protocol is
available for a specific applications, then the more basic lay-
ers should help in constructing it, ideally also adding it as a
new component to the open source toolkit.

5. Initial projects using the toolkit

We currently use the toolkit in three applications that
make use of context authentication:

• Our first application authenticates WLAN clients by
spatial reference to set up IPSec channels [14]. The
protocol for authenticating relative device positions
with ultrasonic pulses [16] was the first complete con-
text authentication protocol to be implemented within
the toolkit. Additionally, this application creates
X.509 certificates on the fly and configures the operat-
ing system IPSec support by using components of the
lower layers of the toolkit.

• The second application authenticates devices based on
common movement by comparing accelerometer time
series [15]. It uses the same building blocks of the
key management layer as the first application, namely
a standard DH key agreement over TCP with an inter-
lock protocol to prevent MITM attacks while exchang-
ing the time series. This application triggered improve-
ments in the sensor layer, as it requires real-time com-
putation of features on the accelerometer data streams
in time and frequency domain. As a more efficient al-
ternative to the DH/interlock protocol combination, we
are currently working on a novel protocol to create key
material from sensor data streams using only symmet-
ric cryptographic primitives.

• In the third project, visible light pulses are used to
transmit authentic messages between devices with di-
rect line of sight. This application again uses the DH
and interlock primitives, but due to one-way “transmis-
sion” over this out-of-band channel, we are currently
designing an alternative combination of these key man-
agement components. This is easily possible due to the
loose coupling of the components.

These applications are mostly concerned with the “user
interface” parts, while the protocols, hardware access, and
internal management functions are provided by the toolkit.
The first application is finished and available as an example
with the current release, and new components developed for
the other two applications will be added after they have re-
ceived sufficient testing.

All components used in the first application (with the ex-
ception of the operating system IPSec channels, which rely
on native libraries) run and are tested on an Asus MyPAL
PocketPC with an IBM J9 JVM in addition to the standard
desktop JVMs. In fact, the application scenario explicitly
includes PDAs as devices that participate in authentication
by spatial reference. First experiments show that most prim-
itives and protocols also run on mobile phones with J2ME
implementations. One of the current challenges is to con-
sistently support sensor data access and wireless communi-
cation on different mobile phone platforms in the respective
layers.

Our current experiences show that implementation of the
cryptographic protocols was among the easier parts and, im-
plemented for one application, it was in practise simple to
reuse for others. It was more difficult and time consuming
to interface with and use sensor data, e.g. to find appro-
priate feature extraction algorithms. This shows an impor-
tant difference to the typical (and better understood) usage
of sensor data: for context authentication, we do not need
good separation between different classes, but high entropy
from an attacker’s point of view. Therefore, we expect the
toolkit to be of particular value in this area, as well as in up-



per layers that tie together sensor data with cryptographic
protocols.

6. Conclusions and future outlook

The toolkit is a collection of cryptographic primitives,
key management protocols, wrappers for dealing with sen-
sor data, and high-level context authentication protocols.
Because of its design, it is easy to use and extend. Work
on this toolkit has been ongoing for over a year. Some of its
components have initially been developed for specific appli-
cations that make use of context authentication. After split-
ting them out and generalising them, they were integrated
into this toolkit. The version available at the time of this
writing is an alpha release that lays groundwork for imple-
menting a growing set of protocols. Its lightweight, event
based structure has proven useful in the projects that trig-
gered the development of this toolkit as well as in further
research projects currently under development.

Our choice of Java as the first implementation platform
and a liberal open source license should allow the toolkit to
be used on a large range of devices. We invite researchers
working on security in ubiquitous computing to contribute
their proposals to a common collection, so that application
developers can easily evaluate and use them.

A first alpha release of the toolkit is available at http:
//www.openuat.org under the terms of the GNU
Lesser General Public License (LGPL). This allows linking
with proprietary and closed source applications, but guar-
antees that changes and additions to the toolkit itself will
remain open source.

7. Acknowledgements

We gratefully acknowledge support by the Commission
of the European Union under contract 013790 “RELATE”
and the FP6 Marie Curie Intra-European Fellowship pro-
gram contract MEIF-CT-2006-042194 “CAPER”, and by
the Engineering and Physical Sciences Research Council in
the UK under grant GR/S77097/01. We thank Gerd Ko-
rtuem and two anonymous reviewers for comments on an
earlier draft.

References

[1] OpenSSL: The Open Source toolkit for SSL/TLS web page.
http://www.openssl.org, 2006.

[2] The Legion of the Bouncy Castle web page. http://
www.bouncycastle.org, 2006.

[3] TinyOS web page. http://www.tinyos.net, 2006.

[4] D. Balfanz, G. Durfee, R. E. Grinter, D. K. Smetters, and
P. Stewart. Network-in-a-box: How to set up a secure wire-
less network in under a minute. In Proc. 13th USENIX Se-
curity Symposium, pages 207–222. USENIX, August 2004.

[5] J. E. Bardram, R. E. Kjær, and M. Ø. Pedersen. Context-
aware user authentication - supporting proximity-based lo-
gin in pervasive computing. In Proc. UbiComp 2003: 5th
Int. Conf., pages 107–123. Springer, October 2003.

[6] S. Creese, M. Goldsmith, R. Harrison, B. Roscoe, P. Whit-
taker, and I. Zakiuddin. Exploiting empirical engagement in
authenticated protocol design. In Proc. SPC 2005: 2nd Int.
Conf. on Security in Pervasive Computing, pages 119–133.
Springer, April 2005.

[7] N. Ferguson and B. Schneier. Practical Cryptography. Wi-
ley Publishing, 2003.

[8] C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual au-
thentication for wireless devices. RSA Cryptobytes, 7(1):29–
37, 2004.

[9] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and
E. Uzun. Loud and clear: Human verifiable authentication
based on audio. In Proc. ICDCS 2006: 26th Conf. on Dis-
tributed Computing Systems, page 10. IEEE, July 2006.

[10] M. K. R. Jonathan M. McCune, Adrian Perrig. Seeing-is-
believing: Using camera phones for human verifiable au-
thentication. Technical report, CMU, November 2004.

[11] T. Kindberg and K. Zhang. Validating and securing spon-
taneous associations between wireless devices. In Proc.
ISC’03: 6th Information Security Conf., pages 44–53.
Springer, October 2003.

[12] T. Kindberg, K. Zhang, and S. H. Im. Evidently secure de-
vice associations. Technical Report HPL-2005-40, HP Lab-
oratories Bristol, March 2005.

[13] T. Kindberg, K. Zhang, and N. Shankar. Context authentica-
tion using constrained channels. In Proc. WMCSA: 4th IEEE
Workshop on Mobile Computing Systems and Applications,
pages 14–21. IEEE Computer Society, June 2002.

[14] R. Mayrhofer. A context authentication proxy for IPSec us-
ing spatial reference. In Proc. TwUC 2006: 1st Int. Work-
shop on Trustworthy Ubiquitous Computing, pages 449–
462. Austrian Computer Society (OCG), December 2006.

[15] R. Mayrhofer and H. Gellersen. Shake well before use: Au-
thentication based on accelerometer data. accepted for pub-
lication at Pervasive 2007, to appear.

[16] R. Mayrhofer, H. Gellersen, and M. Hazas. An authenti-
cation protocol using ultrasonic ranging. Technical Report
COMP-002-2006, Lancaster University, October 2006.

[17] R. Steffen and R. Knorr. A trust based delegation system for
managing access control. In Advances in Pervasive Comput-
ing: Adjunct Proc. Pervasive 2005, volume 191, pages 1–5.
Austrian Computer Society (OCG), April 2005.

[18] S. Vaudenay. Secure communications over insecure chan-
nels based on short authenticated strings. In Advances in
Cryptology - Proc. CRYPTO 2005: 25th Int. Cryptology
Conf. Springer, August 2005.

[19] A. Wacker, T. Heiber, H. Cermann, and P. Marron. A fault-
tolerant key-distribution scheme for securing wireless ad-
hoc networks. In Proc. Pervasive 2004: 2nd Int. Conf. on
Pervasive Computing, pages 194–212. Springer, April 2004.

[20] F.-L. Wong and F. Stajano. Multi-channel protocols. In Proc.
Security Protocols Workshop 2005. Springer, 2006.


