
A Context Prediction Code and Data Base

Rene Mayrhofer, Harald Radi and Alois Ferscha

Institut für Pervasive Computing, Johannes Kepler University Linz
Altenberger Str. 69, A-4040 Linz, Austria

{mayrhofer,radi,ferscha}@soft.uni-linz.ac.at

Abstract. Many of the currently available sensors do not provide sim-
ple, numerical values but more complex data like a list of other de-
vices in range. Although these sensors can, in the general case, not be
transformed to numerical values, they nonetheless provide valuable in-
formation about the device or user context. For exploiting all available
context information, it is thus important to also regard ordinal and nom-
inal sensor values. In this paper, we propose to jointly develop a meta
data format for the evaluation and assessment of context recognition and
prediction methods.

1 Introduction

The goal is to derive current and future high level context information from
low level sensor data by following a four-step approach: data acquisition, feature
extraction, classification and prediction [1]. Starting from low level sensor data
(e.g. Bluetooth, WLAN, RFID), appropriate features (e.g. SNR, MAC addresses
in proximity, access points in range, ESSID) are extracted and classified to yield
high level user context information (e.g. busy, traveling, in a meeting, in the
office, at lunch, at home, telephoning, etc.).

However, these sensors do not yield single, numerical values but data with
a more complex structure. Some important information that can be extracted
from these sensors is categorical (nominal) and non-atomic, e.g. the list of MAC
addresses which are currently in communication range. Nonetheless, it could
provide useful information for determining the current user context via an au-
tomatic classification of all available sensor signals. If non-atomic values should
be used as input to a classification algorithm which can only work with numer-
ical inputs, they need to be coded. The standard procedure for dealing with
categorical data is to code each possible sensor value as binary input to the clas-
sification algorithm. This has been applied successfully to categorical data with
a bounded set of values (e.g. department), but is problematic when the set of
possible values is not known in advance or is too large to be coded with binary
inputs (e.g. WLAN MAC addresses would need 248 input dimensions to cover
all possible values). Therefore, coding categorical data as numerical inputs does
not seem to be the best solution and a better method should be found. We have
presented a method to classify heterogeneous feature vectors in [2]; it is based on
two operations, which have to be defined for each dimension of the feature space,



i.e. for each feature. With these two methods, it is possible to use most common
classification and clustering algorithms on the heterogeneous input space.

Although this method helps in coping with different sensor data types, a
major problem with the current state of data bases for context recognition and
prediction can be identified: many groups work on context recognition and pre-
diction (e.g. [3–18]) and consequently use many different sensor technologies and
many different sensor data types combined with many different recognition and
prediction methods. Due to the lack of a common data format, the input sensor
data sets and results are incompatible and incomparable. An approach to solve
this major problem is to use an unified context data representation, which en-
sures compatibility, ease of data exchange and compliance with software tools.
We propose to jointly define a meta data format, realized as Document Type
Definition (DTD) or XML schema, to host context data sets and to host methods
for context recognition and prediction on these data sets.

In this paper, we do a first step towards this goal by presenting a preliminary
format to log time series of heterogeneous feature vectors efficiently w.r.t to
storage space and to parse it easily for processing and evaluation. This log format
is fully ASCII-based and could be a base for the common data format that still
needs to be developed. We also offer a small C++ library for reading and writing
log files in this format and a selection of methods for recognizing and predicting
context which have already been adapted to this format.

2 Log Format

We would like to point out that the presented log format is preliminary; it
would be desirable to develop a DTD or XML schema for a common format
suitable for storing arbitrary sensor logs for context recognition and prediction.
The main advantages of a XML-based format are that it can be processed with
most software packages and that it is extensible without breaking compatibility
to older versions. We intend to work towards such a goal and convert our current
data sets to the common format as soon as it has been defined.

The main log data is currently stored as a semicolon separated list with
one data vector per line; meta data about the features, including minimum and
maximum values as well as code books, is stored in an XML file. It would be
possible to store the meta data as a header in front of the log data and we
actually recommend a common format to allow for such meta data headers.
For putting log data in a public repository, it is simpler to have all necessary
data stored in a single file. In Fig. 1, the first three lines of a sample log file
are shown. During initialization, a header line starting with the keyword [init]
indicates the used features and their order in the log file; this information should
be embedded in the header/meta data section of a XML-based file. As can
be seen, nearly all possibly types are used in this log file: numerical discrete
(e.g. Time.Timestamp, Audio.Peaks), numerical continuous (e.g. Audio.Mean,
Wlan.ActiveSignalLevel), nominal (e.g. ActiveWindow.ActiveWindow, Wlan.
ActiveEssid, GSM.CellID) and a special case thereof, binary (Power.Plugged).



The only other keyword currently defined for this file format is [missing], which
indicates that the respective feature value could not be sampled at that time
and which is obviously different from the empty value indicated by two adjacent
semicolons ;; (e.g. a list value like Wlan.Peers can be empty if no element of
the list is present). When processing the log data, special care has to be taken
for missing values – in our current implementation we assign them a weight of
zero. Feature names in the header are derived from our sensors and the extracted
features, e.g. the currently set ESSID of the WLAN sensor, but are transparent
to the log file format. Another possible formatting of the data from Fig. 1,
embedded in XML, is shown in Fig. 3. Due to the use of XML attributes for
feature IDs, missing values do not have to be listed explicitly.

An example of the additional XML meta data file can be seen in Fig. 2. For
each of the features that need persistent storage (i.e. data which is not contained
in the log part but needs to be preserved across invocations), an element with
the feature id as attribute and the storage values as sub elements is added.
This format is general and allows each attribute to store and interpret arbitrary
values, as long as they are coded as XML elements. Other features like the binary
Power.Plugged feature – indicating if the laptop is plugged into its charger – do
not need any persistent storage and are consequently not listed here. This XML
tree could be used directly in the header section of a combined log file.

Lessons Learned

The definition and usage of this preliminary log format led to a few insights on
context recognition data sets: the format should be

simple to use Experience shows that one of the most important properties is
the ability to import the data sets into various software packages for data
processing. Although our current semicolon separated format was adequate
for first tests, XML is more appropriate for public data sets and benchmarks
due to better extensibility and tool support. Powerful tools like XSLT pro-
cessors allow simple transformations of the log data in the case that a specific
tool can not directly import it.

self contained Using different files for storing the actual time series and the
meta data about features also turned out to be disadvantageous. Even if the
handling of a combined data format (with meta data in a header and time
series in a log section) leads to more complex writer and parser code, this is
compensated by the clearly simpler administrative handling of a single file
for each data set instead of two files belonging together. However, in a few
scenarios it was necessary to update the meta data file immediately after
writing each log line because a clean application shutdown could not always
be guaranteed due to low battery failures. To prevent a corruption of the
whole data set with invalid meta data, as it had happened before implement-
ing the synchronous update of the meta data file, it must be guaranteed that
the meta data section is always up to date. With a combined XML file, we
do currently not have a solution for that problem; the whole file would need



to be re-written for each new log entry because the meta data header might
change. But this would lead to a significant performance degradation. With
the current format, it is sufficient to append a line to the log file and update
the (small) meta data file.

open During modification and extension of our logging framework over a period
of a few months, the definition of an abstract persistent storage area allowed
great flexibility in adding new types of features without needing to adapt the
log format; we definitely recommend to let each feature (i.e. each dimension
of the feature vector) read and write its own persistent storage in the form
of arbitrary XML elements. The ability to add additional elements in future
versions without breaking older data sets makes XML generally more future-
proof.

3 Hosting Public Code and Data Sets

Since we expect that for most data sets for context recognition and prediction,
additional information will be necessary, uploading the compressed data sets to
a publicly accessible FTP directory might not be sufficient. Instead, we propose
to use a Wiki [19] as a common repository, as has proven successful for the
Portland Pattern Repository [20]. A description of the common context data
format and methods for processing can be stored along with public data sets
and can be easily modified by the community. We have set up a Wiki for storing
all available data sets along with a description of the data formats and already
entered our own data sets and this paper in an electronic version. It is publicly
accessible and freely modifiable at
http://pervasive.soft.uni-linz.ac.at/context-database/ .

4 Conclusions

Heterogeneous sensor data can provide valuable information for context recogni-
tion and prediction and should thus not be neglected. A number of sensors which
describe certain aspects of the device or user context, e.g. WLAN or Bluetooth
devices in range, are categorical and thus not covered by standard, numerically
oriented log formats. We have presented a preliminary log format that allows to
efficiently store highly heterogeneous sensor data in an ASCII format and can be
easily embedded in a common, XML-based format that still needs to be defined.
Meta data like the mapping of sets of categorical sensor values or minimum and
maximum values of numerical sensor data is currently stored in an accompanying
XML file that could act as a header for a common file. It would be desirable to
jointly define a common DTD or XML schema for publishing currently available
data sets for context recognition and prediction in an extensible, future-proof
format.



References

1. Mayrhofer, R., Radi, H., Ferscha, A.: Recognizing and predicting context by learn-
ing from user behavior. In G. Kotsis, A. Ferscha, W.S., Ibrahim, K., eds.: The In-
ternational Conference On Advances in Mobile Multimedia (MoMM2003). Volume
171., Austrian Computer Society (OCG) (2003) 25–35

2. Mayrhofer, R., Radi, H., Ferscha, A.: Feature extraction in wireless personal and
local area networks. In Agha, K.A., Omidyar, C.G., eds.: The Proceedings of The
Fifth IFIP-TC6 International Conference on Mobile and Wireless Communications
Networks (MWCN 2003), World Scientific (2003) 195–198

3. Gellersen, H., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile
devices and smart artefacts. Mobile Networks and Applications 7 (2002) 341–351

4. Schmidt, A.: Ubiquitous Computing – Computing in Context. PhD thesis, Lan-
caster University (2002)

5. Salber, D., Dey, A.K., Abowd, G.D.: he context toolkit: Aiding the development
of context-enabled applications. In: Proceedings of the 1999 Conference on Human
Factors in Computing Systems (CHI ’99). (1999) 434–441

6. Cook, D.J., Youngblood, M., E. O. Heierman, I., Gopalratnam, K., Rao, S., Litvin,
A., Khawaja, F.: Mavhome: An agent-based smart home. In: First IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom’03),
IEEE Computer Society Press (2003) 521–524

7. Clarkson, B., Mase, K., Pentland, A.: Recognizing user context via wearable sen-
sors. In: ISWC. (2000) 69–76

8. Beigl, M., Krohn, A., Zimmer, T., Decker, C., Robinson, P.: Awarecon: Situa-
tion aware context communication. In Dey, A., Schmidt, A., J.McCarthy, eds.:
Proceedings of the Fifth International Conference on Ubiquitous Computing (Ubi-
Comp’03). Volume 2864 of Lecture Notes in Computer Science., Seattle, WA, USA,
Springer (2003) 132–139

9. Cakmakci, O., Coutaz, J., Laerhoven, K.V., Gellersen, H.W.: (Context awareness
in systems with limited resources)

10. Gross, T., Specht, M.: Awareness in context-aware information systems. In: Proc.
Mensch & Computer 01, Bonn 2001. (2001)

11. : Deliverable D05: 1st year progress report of the
Oresteia project. Technical report (2002) available at
http://manolito.image.ece.ntua.gr/oresteia/htmldocs/deliverables.htm.

12. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., My-
natt, E.D., Starner, T., Newstetter, W.: The aware home: A living laboratory for
ubiquitous computing research. In: Proceedings of the Cooperative Buildings, Inte-
grating Information, Organization, and Architecture, Second International Work-
shop, CoBuild’99. Volume 1670 of Lecture Notes in Computer Science., Springer
(1999) 191–198

13. Headon, R.: Movement awareness for a sentient environment. In: First IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom’03),
IEEE Computer Society Press (2003) 99–106

14. Judd, G., Steenkiste, P.: Providing contextual information to pervasive computing
applications. In: First IEEE International Conference on Pervasive Computing and
Communications (PerCom’03), IEEE Computer Society Press (2003) 133–142

15. Mäntyjärvi, J., Himberg, J., Huuskonen, P.: Collaborative context recognition for
handheld devices. In: First IEEE International Conference on Pervasive Computing
and Communications (PerCom’03), IEEE Computer Society Press (2003) 161–168



16. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information
in pervasive computing systems. In: Pervasive Computing, First International
Conference, Pervasive 2002, Zürich, Switzerland, August 26-28, 2002, Proceedings.
Volume 2414 of Lecture Notes in Computer Science., Springer (2002) 167–180

17. Bauer, M., Becker, C., Rothermel, K.: Location models from the perspective
of context-aware applications mobile ad hoc networks. Personal and Ubiquitous
Computing 6 (2002) 322–328 Sonderforschungsbereich SFB 627 (Nexus: Umge-
bungsmodelle für mobile kontextbezogene Systeme).

18. Bauer, M., Rothermel, K.: Towards the observation of spatial events in distributed
location-aware systems. In Wagner, R., ed.: Proceedings of the 22nd International
Conference on Distributed Computing Systems Workshops (ICDCS 2002), Los
Alamitos, California, USA, Universität Stuttgart, IEEE Computer Society (2002)
581–582 Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle für mobile
kontextbezogene Systeme).

19. Leuf, B., Cunningham, W.: The Wiki Way. Addison-Wesley (2001)
20. : Portland pattern repository. (http://c2.com/ppr/)

[init]Time.Timestamp;ActiveWindow.ActiveWindow;Audio.Mean;Audio.Peaks;Audio.Band.0;Audio.Band.1;
Power.Plugged;Wlan.ActiveEssid;Wlan.ActiveMode;Wlan.ActiveSignalLevel;Wlan.ActiveMacAddress;
Wlan.Peers;Wlan.NumPeers;GSM.CellID;

1068993793;0;35.12744140624988600;0.00000000000000000;115.05078125000006000;112.98437500000001000;
1;0;2;0.62000000000000000;0;100;1.00000000000000000;[missing];

1068993824;1;0.08825171921780387;249.00000000000000000;-1.51129771706587120;-0.69374532185629911;
1;0;2;0.63000000000000000;0;1000;1.00000000000000000;[missing];

Fig. 1. Header and two lines of an example log file with highly heterogeneous data vectors

<persistent>
<feature id="ActiveWindow.ActiveWindow">

<element id="0"><![CDATA[cmd.exe]]></element>
<element id="1"><![CDATA[trillian.exe]]></element>
<element id="10"><![CDATA[EXCEL.EXE]]></element>
<element id="93"><![CDATA[uninst.exe]]></element>

</feature>
<feature id="Audio.Mean">

<element id="maxval"><![CDATA[153.30539772726931000]]></element>
<element id="minval"><![CDATA[0.00000000000000000]]></element>

</feature>
<feature id="Audio.Peaks">

<element id="maxval"><![CDATA[856]]></element>
<element id="minval"><![CDATA[0]]></element>

</feature>
<feature id="Wlan.ActiveEssid">

<element id="0"><![CDATA[nme]]></element>
<element id="1"><![CDATA[]]></element>
<element id="10"><[CDATA[]]></element>
<element id="2"><![CDATA[universe]]></element>
<element id="3"><![CDATA[]]></element>

</feature>
</persistent>

Fig. 2. Meta data for the example log file



<log>
<sample timestamp="1068993793">

<feature id="ActiveWindow.ActiveWindow">0</feature>
<feature id="Audio.Mean">35.12744140624988600</feature>
<feature id="Audio.Peaks">0.00000000000000000</feature>
<feature id="Audio.Band.0">115.05078125000006000</feature>
<feature id="Audio.Band.1">112.98437500000001000</feature>
<feature id="Power.Plugged">1</feature>
<feature id="Wlan.ActiveEssid">0</feature>
<feature id="Wlan.ActiveMode">2</feature>
<feature id="Wlan.ActiveSignalLevel">0.62000000000000000</feature>
<feature id="Wlan.ActiveMacAddress">0</feature>
<feature id="Wlan.Peers">100</feature>
<feature id="Wlan.NumPeers">1.00000000000000000</feature>

</sample>
<sample timestamp="1068993824">

<feature id="ActiveWindow.ActiveWindow">1</feature>
<feature id="Audio.Mean">0.08825171921780387</feature>
<feature id="Audio.Peaks">249.00000000000000000</feature>
<feature id="Audio.Band.0">-1.51129771706587120</feature>
<feature id="Audio.Band.1">-0.69374532185629911</feature>
<feature id="Power.Plugged">1</feature>
<feature id="Wlan.ActiveEssid">0</feature>
<feature id="Wlan.ActiveMode">2</feature>
<feature id="Wlan.ActiveSignalLevel">0.63000000000000000</feature>
<feature id="Wlan.ActiveMacAddress">0</feature>
<feature id="Wlan.Peers">1000</feature>
<feature id="Wlan.NumPeers">1.00000000000000000</feature>

</sample>
</log>

Fig. 3. Embedding sensor data in XML elements


