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Abstract—Indoor localization is becoming increasingly im-
portant for mobile applications. WLAN fingerprinting is a
compelling technique because it builds upon existing infras-
tructure and client hardware available in off-the-shelf mobile
devices. We evaluate different methods for WLAN fingerprint
classification with a focus on on-device localization. The main
scientific contribution of this approach is that any Android
based device can localize itself (without any server being able
to determine the current location) using existing WLAN infras-
tructure (no additional access points have to be installed, the
firmware of existing access points doesn’t have to be changed).
This approach was chosen to make indoor localization feasible
in non-academic use cases.

With a functional implementation and a simple procedure
for collecting WLAN fingerprints, we currently achieve an
accuracy of 4 m in 90% of all cases with a mean error of
only 2.2 m when the same device is used for training and
testing. Next steps are calibration between different mobile
devices, post-processing in terms of movement, and automatic
downloading of the required WLAN fingerprint databases on
a global scale.

Keywords-indoor localization; fingerprinting; client based
localization

I. INTRODUCTION

Context in general and location specifically are very

important aspects of many pervasive computing applications.

Especially for applications in home, office, school, and

industrial settings, location of users and devices is one of the

most significant aspects for inferring context information.

For outdoor localization there is GPS, but until now there

is no widely deployed system for indoor localization. In

Section II some current indoor localization projects are

presented, but none of the currently existing systems are

ready to be deployed by non-expert personnel in a real world

setting.

We study systems that:

• support localization for arbitrary Android devices;

• require no additional infrastructure;

• provide self-localization for client devices for privacy

reasons; and

• are simple enough for end users (such as home owners

or building personnel) to set up, calibrate, and deploy

for their own spaces.

Especially the last requirement proves difficult to fulfill

with existing systems, and we therefore investigate the whole

work-flow from set-up to live usage.

Based on WLAN fingerprinting, we present an analysis of

the effects of different classifiers, device heterogeneity, and

resolution on the achieved accuracy. We show that, when

using the same device for training, an accuracy of better

than 4 m can be achieved with on-device self-localization.

That is, client devices only need to install a small application

and download the fingerprint database to localize themselves

within already deployed WLAN infrastructure. Calibration

methods for improving cross-device accuracy are subject to

future work.

II. RELATED WORK

Numerous different approaches for indoor localization

exist. One differentiation criterion is the underlying (hard-

ware) technology. There are systems based on GPS [1],

GSM cells [2], Bluetooth [3], Ultra Wide Band (UWB) [4],

RFID [5], Ultrasound [6] and infrared light [7].

Our localization system uses WLAN (Wireless Local Area

Network) IEEE 802.11 for position estimation. One of the

first systems that also used WLAN to determine the location

is RADAR [8]. The most obvious similarity between our

localization system and RADAR is the usage of WLAN.

Another aspect that is common to both systems is that

fingerprinting (see Section III) is used to estimate the user’s

position. However, in our localization system no propagation

model is used. One of the differences between the systems

is that RADAR uses PCs as base stations and notebooks as

hosts while our localization System uses commodity wireless

access points as base stations and Android phones as hosts.

The biggest difference is that in our system hosts do not

send any data to base stations, they only receive data and

position themselves passively with obvious benefits for user

privacy.

Our localization system and the system in [9] have in

common that WLAN fingerprinting is used to determine

the location of mobile hosts. The application paradigm

on the other hand is diametrical. While our system com-

pletely avoids changing existing infrastructure components

to reduce costs and maximize privacy, the system in [9]
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relies heavily on location estimation in the infrastructure to

overcome device heterogeneity.

Placelab [10] was one of the first projects where on-

device-localization was implemented for outdoor localiza-

tion. We follow the same approach for indoor scenarios, but

with improvements to localization accuracy.

All aforementioned projects have in common that the

whole system installation demands expert personnel for

configuring/installing hardware or performing site surveys.

Our research ambition is to overcome this issue and provide

a system which can easily be set-up by non-expert personnel.

III. METHOD

The aforementioned term fingerprinting constitutes the

process of collecting received signal strength information

(RSSI), associating them with real world locations and

finally comparing the previously recorded RSSI with the

current RSSI of a device that should be located. That is

the operational principle of our localization system.

Fingerprinting consists of two phases. In the first phase

(off-line phase) a grid of measurement points (MPs) is laid

out on a floor plan. Then RSSI is recorded at every MP

(substituting -100 dBm when BSSIDs are not visible, based

on practical experience). For every MP tuples of the form

(n, t, RSSI0, RSSI1, . . . , RSSIk) are stored, where n stands

for the name of the MP (e.g. MP1), t is the time stamp of

the record and RSSI0 . . . RSSIk stands for the RSSI of all

access points in range. The records of all MPs are called

fingerprint database.

The second phase is called on-line phase. Here the cur-

rently recorded RSSI of a device that should be located

are compared to the entries in the fingerprint database. The

position of the most similar MP is then assumed to be the

position of the device and therefore, of the user.

For comparison of fingerprint database and current RSSI

several classifiers from the Waikato Environment for Knowl-

edge Analysis (WEKA)1 were investigated. Empirical tests

showed that the best results are achieved with ”weighted

k nearest neighbours” (WKNN), ”KStar”, ”Random Tree”

and ”Random Forrest”. In this context the criteria for ”best

results” are: accuracy (percentage of correctly classified

MPs/rooms), training time (time needed to ”teach” the

algorithm the fingerprint database) and matching time (the

time a trained algorithm needs to match the current RSSI

to the fingerprint database). Since the feature vector only

consists of RSSI of all the access points it can easily be

processed by all investigated classifiers.

IV. IMPLEMENTATION

The first step to successfully perform fingerprinting is to

lay out MPs on a floor plan. To achieve this, the interior

design application ”Sweet Home 3D” (SH3D)2 was used. In

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.sweethome3d.com/

SH3D existing floor plans can be imported as background

images, rooms can be defined on that plan and objects can

be positioned in those rooms. The main reason to choose

SH3D was that custom functionality can be added via plug-

ins. This plug-in mechanism was used to automatically lay

out all MPs on a two meter grid in every room and export

the coordinates and names of all modelled rooms and MPs

into an XML (eXtensible Markup Language) file.

The next step after laying out the MPs is to record

the fingerprint database. Therefore, an Android application

to collect RSSI at every MP was written – the so called

”survey tool”. Of course this tool was designed to be used

by non-expert users to keep the whole process as simple

as possible. After the fingerprint database was recorded, the

gathered data can be exported as ARFF (Attribute-Relation

File Format)-file, that can directly be used for training and

classification by any WEKA classifier.

The initial selection of suitable classifiers was done with

WEKA. After the best classifiers were identified, the WEKA

API was used to implement an Android service that uses

those classifiers in conjunction with the previously recorded

fingerprint database to estimate the current position. Due to

the fact that this functionality was implemented as Android

service applicability and reusability are greatly enhanced.

Regardless of the operating system’s version that service

can be installed on any Android device. It then offers an

interface to query the user’s current location via one simple

method call. This architecture enables arbitrary third party

applications to use our indoor localization service. In the

current implementation the fingerprint database has to be

provided by the application using the service, one of the

next steps will be the implementation of a work flow to

automatically download all relevant indoor localization data

from nearby sources.

V. RESULTS

All data samples were acquired at the University of

Applied Sciences Upper Austria, campus Hagenberg in the

rooms labelled L2.MC, PL1.MC, L1.MC, PL2.MC, SRMC.

All rooms except SRMC are situated on the same corridor.

The MPs were laid out on a 2m grid in every room. The

devices used for data collection were: Google Nexus S

(nexus), Google G1 (g1) and HTC Desire HD (desire).

We investigated two different approaches. The first is

matching on MP level, i.e. the attribute for classification is

the name of the MP. The second is matching on room level,

i.e. the attribute for classification is the room name. Our

goal in the preliminary tests was to determine the room the

device is located in. Room level matching directly provides

that information, but when using MP level matching the

room information can easily be inferred since the room a

MP is in is known. In order to evaluate how device hetero-

geneity influences localization results several combinations

of training- and test-datasets were analyzed.
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Figure 1. Confusion Matrix for MP-level matching with nexus dataset for
training and testing.

Figure 2. Confusion Matrix for room-level matching with nexus dataset
for training and testing.

Figure 1 shows a confusion matrix for MP-level matching.

The nexus dataset was used for both training and testing. In

this case 410 out of 417 instances were matched correctly

(98,32%). One explanation for the incorrect matches at

MP38, MP39, MP40 is that MP36 to MP41 are situated

in SRMC where less access points are visible than in the

other rooms.

Figure 2 shows that 100% of all instances were matched

correctly on room level when the nexus dataset was used for

training and testing. However, when training with the nexus
and testing with the desire dataset, only 397 out of 430

instances were matched correctly (92.33%, cf. Fig. 3). This

indicates that even for coarse location estimation, device

heterogeneity is a significant issue.

Figure 3. Confusion Matrix for room-level matching with nexus dataset
for training and desire dataset for testing.

Figure 4. Confusion Matrix for MP-level matching with nexus dataset for
training and desire dataset for testing.

Table I
PERCENTAGES OF CORRECTLY MATCHED MP WITH ALL INVESTIGATED

CLASSIFIERS AND ALL DATASET COMBINATIONS.

1NN W3NN W4NN K* RC RF
AA 95,03 95,60 95,60 89,93 95,60 95,28
AD 38,37 39,30 38,60 33,72 43,72 40,70
AN 33,09 35,73 36,69 31,18 35,01 35,49
AG 41,84 41,84 39,33 62,76 63,60 65,27
DA 24,03 24,54 24,09 25,30 25,11 25,24
DD 93,02 93,49 93,49 84,88 93,49 92,79
DN 14,39 13,67 14,39 16,31 14,39 13,67
DG 10,88 13,39 13,81 11,72 9,21 11,72
NA 22,31 21,22 21,48 22,75 22,75 20,84
ND 14,42 16,28 18,14 16,74 15,12 16,05
NN 98,32 98,32 98,32 93,77 98,32 98,32
NG 6,69 7,11 7,11 7,95 11,72 6,69
GA 17,27 17,91 17,97 20,59 18,61 17,08
GD 3,95 4,42 3,95 6,74 6,05 6,98
GN 9,11 7,67 8,63 6,24 6,00 3,60
GG 100 100 100 100 100 100

For fine location estimation (gridsize=2m) the error rate

drastically increases; only 72 out of 430 MPs were matched

correctly (16.74%, cf. Figure 4).

Table I gives an overview of the device heterogeneity

problem. Every column shows the percentage of correctly

matched MPs for one classifier (1NN = 1 nearest neighbour,

W3NN = weighted 3 nearest neighbors, W4NN = weighted

4 nearest neighbours, K* = KStar, RC = random committee,

RF = random forest). The first column shows which com-

bination of training/test dataset was used (A = combined

dataset from all devices, D = HTC Desire HD, N = Google

Nexus S, G = Google G1).

The cumulative distribution function in Fig. 5 shows that

in 90% of all classifications the absolute error is below 4 m

with a mean error of 2.2 m. These are results obtained with

the nexus dataset for training and testing.

The cumulative distribution function shown in Fig. 6 once

again depicts the problematic situation of heterogeneous

devices. For this CDF, the nexus dataset was used for training

and the g1 dataset for testing. Here the errors significantly

increase. Only about 15% of all classifications result in an

error below 4 m with a mean error of 15.71 m.
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Figure 5. Cumulative distribution function for MP-level matching with
nexus dataset for training and testing.

Figure 6. Cumulative distribution function for MP-level matching with
nexus dataset for training and g1 dataset for testing.

VI. DISCUSSION

These results are promising, but there still is potential

for improvement. The biggest issue is device heterogeneity.

Even though all Android devices provide RSSI in dbm3,

factors like antenna position and network interface hardware

make it difficult to compare a fingerprint database that was

recorded with device A with current RSSI of device B.

Manual linear calibration was applied but did not yield

the desired effect of overcoming device heterogeneity. The

recently suggested method of offset calibration [11] could

improve the situation but was not applied yet.

Another option for improving accuracy of the system is

post-processing. Until now one very simple algorithm for

room level matching was implemented. The average of the

three most likely positions is mapped to a room which is

then presented as result. This approach slightly improves

the room-level accuracy, but not significantly.

We are aware that when it comes to tracking (continuous

localization of a moving user/device) new issues arise. Until

now no representative tests with moving users/devices were

conducted, but we expect Kalman filtering to be beneficial

for accuracy. Next steps are an integration with known

3Android: ScanResult API documentation http://developer.android.com/
reference/android/net/wifi/ScanResult.html (accessed October 2011)

“anchor points” to compute absolute coordinates in a format

compatible with GPS for a fusion of indoor and outdoor

localization within the same application, and further analysis

on practical cross-device calibration that can be performed

by end users in their own homes. First results are encour-

aging, but subject to future work.

All data analyzed in this paper was recorded on a single

floor and only on one day. Evaluation of additional datasets

of multiple floors at different times is subject to future work.

To complete the process of self localization, we suggest

a mechanism to automatically download indoor localization

data of nearby buildings. Our approach is to store an index

of available databases on a globally available platform (e.g.

Open Street Map), but to store the actual databases on

a local server at the building where devices can localize

themselves. This approach is described further in a paper

currently submitted for publication.
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