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Kurzfassung

Pervasive Computing ist eine neue, zunehmend an Bedeutung gewinnende Forschungsrichtung an der
Berührungsstelle zwischen Benutzerinteraktion, eingebetteten und verteilten Systemen und Netzwerk-
technologien. Das erklärte Ziel ist eine holistische Gestaltung von Computertechnologie, oft gleichge-
setzt mit dem “Verschwinden” derselben in den Hintergrund des täglichen Lebens. Ein zentraler Aspekt
bei der Verfolgung dieses Ziels ist die Reduktion expliziter, vereinnahmender Schnittstellen zur Mensch-
Maschine Interaktion zugunsten impliziter, in Alltagsgegenständen verankerter. Während erstere die
Aufmerksamkeit von Benutzern binden, erlauben letzere eine intuitive und unaufdringliche Benutzung.
Diese dem Menschen eher entgegenkommende Form des Umgangs mit Computersystemen erfordert je-
doch die Anpassung solcher Systeme an den jeweiligen Kontext, in dem sie betrieben werden. Kontext
wird hierbei, wie in diesem Zusammenhang üblich, als die Ansammlung von für die Benutzerinteraktion
relevanter Information über die aktuelle Situation einer Person, eines Ortes oder eines Objekts verstan-
den. Die sogenannte kontextbezogene Interaktion, manifestiert durch den Entwurf und die Konstruktion
kontextsensitiver Systeme, ist daher einer der Grundpfeiler von Pervasive Computing. Im Zuge dieser
wissenschaftlichen Stoßrichtung entstanden innerhalb der letzten fünf Jahre entscheidende Arbeiten zur
Erkennung des aktuellen Kontext anhand verschiedenartigster Sensoren, die in Kombination miteinan-
der ein möglichst breit gestreutes Modell der realen Welt liefern sollen.

In dieser Dissertation wird der nächste logische Schritt einer eingehenderen Betrachtung unterzogen:
die Vorhersage zukünftiger Kontexte. Der generelle Ansatz ist dabei die Vorhersage abstrakter Kontexte
mit dem Ziel, Computersysteme auf zukünftig eintretende Situationen proaktiv vorbereiten zu können.
Diese Vorhersage von Kontext auf abstrakter Ebene erlaubt gegenüber der unabhängigen Vorhersage
einzelner Aspekte — wie exemplarisch der geographischen Position des Benutzers — eine gemeinsame
Betrachtung aller erfassbaren Aspekte. Dadurch wird eine Auswertung von Mustern und Zusammenhän-
gen im Benutzerverhalten, die auf niedrigeren Betrachtungsebenen nicht erkennbar sind, ermöglicht. Die
vorliegende Arbeit analysiert die Bedingungen für benutzergerechte Vorhersage von Kontext und ent-
wickelt, aufbauend auf bereits bekannten Methoden zur datenbasierten Vorhersage wie beispielsweise
den verschiedenartigen Ausprägungen von Markov Modellen, eine Architektur zur automatischen, im
Hintergrund ablaufenden Kontexterkennung und -vorhersage. Besonderes Augenmerk wird dabei auf
implizite Benutzerinteraktion ohne Unterbrechung der Benutzer während ihrer normalen Tätigkeiten
und auf beständige Adaption der entwickelten Systeme aufgrund sich ändernder Rahmenbedingungen
gelegt. Ein weiterer Aspekt ist der sparsame Umgang mit Ressourcen zur möglichen Integration von
Kontextvorhersage in eingebettete Systeme. Die entwickelte Architektur wird anschließend in Form
eines flexiblen Software-Frameworks umgesetzt und mit aufgezeichneten Daten aus alltäglichen Situa-
tionen evaluiert. Diese Betrachtung zeigt, dass die Vorhersage abstrakter Kontexte in Grenzen bereits
möglich ist, jedoch noch Raum für Verbesserungen der Vorhersagequalität in zukünftigen Arbeiten offen
bleibt.



Abstract

Pervasive Computing is a new area of research with increasing prominence; it is situated at the intersec-
tion between human/computer interaction, embedded and distributed systems and networking technol-
ogy. Its declared aim is a holistic design of computer systems, which is often described as the disappear-
ance of computer technology into the periphery of daily life. One central aspect of this vision is a partial
replacement of explicit, obtrusive interfaces for human/computer interaction that demand exclusive user
attention with implicit ones embedded into real-world artifacts that allow intuitive and unobtrusive use.
This kind of interaction with computer systems suits human users better, but necessitates an adaption
of such systems to the respective context in which they are used. Context is, in this regard, understood
as any information about the current situation of a person, place or object that is relevant to the user
interaction. Context-based interaction, which is pursued by the design and implementation of context-
sensitive systems, is therefore one of the building blocks of Pervasive Computing. Within the last five
years, a number of seminal publications on the recognition of current context from a combination of
different sensors have been written within this field.

This dissertation tackles the next logical step after the recognition of the current context: the prediction
of future contexts. The general concept is the prediction of abstract contexts to allow computer systems
to proactively prepare for future situations. This kind of high-level context prediction allows an inte-
gral consideration of all ascertainable aspects of context, in contrast to the autonomous prediction of
individual aspects like the geographical position of the user. It allows to consider patterns and interre-
lations in the user behavior which are not apparent at the lower levels of raw sensor data. The present
thesis analyzes prerequisites for user-centered prediction of context and presents an architecture for au-
tonomous, background context recognition and prediction, building upon established methods for data
based prediction like the various instances of Markov models. Especial attention is turned to implicit
user interaction to prevent disruptions of users during their normal tasks and to continuous adaption of
the developed systems to changed conditions. Another considered aspect is the economical use of re-
sources to allow an integration of context prediction into embedded systems. The developed architecture
is being implemented in terms of a flexible software framework and evaluated with recorded real-world
data from everyday situations. This examination shows that the prediction of abstract contexts is al-
ready possible within certain limits, but that there is still room for future improvements of the prediction
quality.



Dedication

To my parents, for not telling but showing me what is important in life and being always

there for me. You have made all of this possible. Thank you.





Acknowledgments

Without the support of a large number of people, writing this thesis would most probably have taken
significantly longer and would definitely have been less enjoyable. I am especially grateful to:

• My supervisor Prof. Mag. Dr. Alois Ferscha for giving me the opportunity to work in his group
and presenting me with a choice of interesting topics to work on. Although he seemed to be too
busy to even have some private life, he always managed to be available for questions and offered
useful suggestions without confining my research on this thesis.

• Harald Radi, for doing his diploma thesis on the implementation of the concepts presented in this
thesis and becoming a good friend during this task. Many of the ideas, concepts, interfaces and
ad-hoc solutions to intermediary issues were developed in close cooperation with him and major
parts of the framework, including the complete Windows implementation, were completely done
by him. He worked independently and with outstanding efficiency while producing excellent code
quality. Without him, the implementation of our concepts would not have been possible in such a
quality and extent.

• Prof. Dr. Hans-Werner Gellersen for reading this thesis as the second supervisor and giving valu-
able hints on various topics.

• Dipl. Inf. Dr. Albrecht Schmidt for many suggestions on the topic of context awareness and on
writing a PhD thesis in general.

• Dipl.-Ing. Dr. Simon Vogl for sharing the office with me and supporting me in too many ways
to list. He always had answers for implementation issues and useful hints for debugging obscure
errors and reminded me of creating artificial test data before working on real-world data.

• Dipl.-Ing. Volker Christian, who is a steady source of information about UNIX-type systems and
far more reliable then manual pages.

• Manfred Hechinger for helpful discussions on the general topic of proactivity and for relieving
me of much project work during the time when I actually wrote this thesis.

• Prof. Dipl.-Ing. Dr. Günther Blaschek for many hints on various topics and discussions about the
implications on user interfaces.

• Dipl.-Ing. Dr. Wolfgang Narzt for organizational support and sharing his insights on academic
careers.

• Prof. Dipl.-Ing. Dr. Josef Scharinger for suggesting the used quality measure for optimizing the
number of clusters for k-means and general encouragement towards an academic career.

• My partner Petra Wagner, who had to endure two years of long working hours while I was working
on this thesis and always supported me emotionally in easy as well as hard times.

• All my friends and colleagues for making the time at university as enjoyable as it was.



Parts of this thesis have been published as [MRF03b, MRF03a, MRF04b, May04, MRF04a, RMF04]
and I would like to thank the co-authors for helpful suggestions on improving certain sections, which
also improved the presentation of the respective extended versions in this thesis.



i

Contents

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.3 Scope and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Context Computing 7
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Motivation for using Context Awareness . . . . . . . . . . . . . . . . . . . . .8

2.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.1.4 Context in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.2 Proactive Context Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.2.1 Motivation for using Proactivity . . . . . . . . . . . . . . . . . . . . . . . . .15

2.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 19
3.1 Projects and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.2 Pioneering Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

4 Context Prediction 33
4.1 General Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

4.1.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4.1.2 Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

4.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

4.3 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4 Sensor Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4.1 Sensing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.5.1 Types of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

4.5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46



ii CONTENTS

4.5.3 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.5.4 Adaptation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.5.5 Examples for Feature Dimensions . . . . . . . . . . . . . . . . . . . . . . . .47

4.5.6 Time Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.6.3 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4.6.4 Extended Lifelong Growing Neural Gas . . . . . . . . . . . . . . . . . . . . .57

4.7 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

4.8 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

4.8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

4.8.2 Aspects of Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.8.3 Options for Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.8.4 Continuous Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . .67

4.8.5 Categorical Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . .70

4.8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

5 Framework 77
5.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

5.2 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

5.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

5.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

5.4.1 Feature Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

5.4.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

5.4.3 Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

5.4.4 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

5.5 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

5.5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

5.5.2 Repository for Public Data Sets . . . . . . . . . . . . . . . . . . . . . . . . .90

5.6 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

6 Evaluation 91
6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

6.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

6.3 Context Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

6.3.1 Quality Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

6.3.2 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

6.3.3 Kohonen SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

6.3.4 Extended LLGNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

6.4 Context Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

6.4.1 Quality Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

6.4.2 Analysis of the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109



CONTENTS iii

6.4.3 Continuous Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
6.4.4 Categorical Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

6.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

7 Conclusion 127
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
7.3 Critical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
7.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

List of Figures i

List of Tables iii

List of Abbreviations iv

Bibliography vii



iv CONTENTS



1

Chapter 1

Introduction

Computing environments are changing rapidly, and the pace of this change is still increasing. Due to the
broad availability of computing and network infrastructure, the potential audience of computing, com-
munication or other services of informational nature is growing steadily. Within the last two decades, a
number of well-established research fields in the area of computer science started to move the computing
infrastructure beyond the desktop, establishing new ways of interacting with computer systems:Embed-

ded Systemsis concerned with the interaction between software and artifacts, i.e. real-world objects
enriched with processing power, and tackles sensors and actuators, real time behavior, fault-tolerance,
hardware design and autonomous operation.Distributed Systemsconcentrates on the interaction be-
tween software components which are executed concurrently on distributed processors and handles data
distribution, synchronization and scalability issues.Human/Computer Interaction(HCI) applies psy-
chological, ergonomic and technical means to improve the understandability and efficiency and reduce
the error rate of user interfaces.Software Engineeringattends to methodologies, architectures and tools
for designing, implementing and maintaining software and therefore contributes directly to other fields
of computer science. These different efforts of advancing computer science, to pervade everyday life
and to foster wide availability and acceptance, yielded in 1991 Mark Weiser’s seminal article [Wei91].
His vision of Ubiquitous Computingis that computer systems should disappear into the periphery of
our daily lives, that computing infrastructure as a tool should be available everywhere, everytime, and
to everybody.
However, at the time of his writing, the vision was ahead of time and available technology did not allow
to realize it in an appropriate form. Only a decade later, technology and engineering had progressed far
enough to allow its revival. The most important enabling technologies, namely wireless communication
and miniaturization, had matured and were able so solve previously prohibitive issues, manifested by
the emergence of industry standards like IEEE 802.11 wireless LAN in 1999 [IEE99] and BluetoothR©

version 1.1 in 2001 [IEE02]. At the same time, theInternational Symposium on Handheld and Ubiq-

uitous Computing (HUC’99)started a series of conferences, attracting broad attention and heralding a
boom of Mark Weiser’s general vision since then. It is still inspiring to a large number of researchers
from different fields — ubiquitous computing, pervasive computing, ambient computing, calm comput-
ing, sentient computing, autonomous computing, hidden computing, invisible computing, disappearing
computing and more terms have been coined over the last years, typically proclaiming a similar vision
but with slightly different focus. Within the scope of this thesis, the term pervasive computing will be
used, which is synonymous to ubiquitous computing but accentuates that real-life objects are equipped,
or pervaded, with technology to make the whole world an interface to computing resources. Portray-
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ing a new kind of computer systems, or of interacting with computer systems, research on pervasive
computing is inherently inter-disciplinary. In addition to the cornerstone fields that initiated its advent,
others like artificial intelligence (AI), robotics, information systems and databases, operating systems
and communication technology facilitate further advances towards going beyond the desktop.
As a combination of aspects from this multitude of research fields, two major directions evolved:in-

formation appliancesandawareness. Information appliances are special-purpose devices designed to
perform a specific function, specialized in information, with the ability to share information with other
appliances [Nor98]. Today, e.g. mobile phones, handheld computers, set-top boxes or embedded appli-
ances in room or building installations can be seen as information appliances. The second major direc-
tion is to make devicesawareof their environment, resembling the notion of awareness from social and
psychological sciences. When computer systems become aware of the situation they are used in, they
can adapt better to the user’s needs and engage in more efficient interaction. In the field of CSCW (com-
puter supported cooperative work), awareness also plays a pivotal role and has been defined in [DB92]
as:

Awareness is an understanding of the activities of others, which provides a context for your

own activity.

In this sense, awareness is a key issue for supporting users during their daily work with computer sys-
tems, as only a dynamic adaptation to the task at hand will make computing environments user friendly
and supportive. The combination of awareness with information appliances, or rather the implemen-
tation of awareness in information appliances became known ascontext awareness[SBG99], since a
device should act within its current context of use, by being aware of the various aspects of its current
environment. Context awareness is concerned with the situation a device or user is in, and with adapting
applications to the current situation.
Many systems have been developed which are aware of the current user’s or their own context, rang-
ing from the long-established context sensitive help systems to the controversial “wizards” in current
desktop computer applications and to recent research projects on context awareness going far beyond
that. But knowing the current context an application or system is used in and dynamically adapting to it
only allows to construct reactive systems, i.e. systems which run after changes in their environment. To
maximize their usefulness and user support, systems should rather adapt in advance to a new situation
and be prepared before they are actually used. This demands the development of proactive systems, i.e.
systems which predict changes in their environment and act in advance. To this end, we strive to develop
methods to predict future context, enabling systems to become proactive with regard to their context of
use. Our concept is to provide software applications not only with information about the current user
context, but also with predictions of future user context. When equipped with various sensors, a system
should classify current situations and, based on those classes, learn the user’s behaviors and habits by
deriving knowledge from historical data. The focus of this thesis is to forecast future user context by
extrapolating the past.

Judging from the current mobile phone and handheld developments, personal, mobile information ap-
pliances in various forms will be the primary digital companions and simultaneously the primary user
interfaces for a large number of people within the next years. Therefore, we are currently focusing
on embedded systems, which are self-contained computer systems with typically severely limited re-
sources, such as memory or processing power. Methods and algorithms suitable for embedded systems
can easily be used on more powerful computer systems, like an infrastructure behind a room or build-
ing, but not the other way around. We are thus concentrating on this more challenging class of computer
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systems. Additionally, information appliances need to be fully operational at all times and will need to
be “trained” by their users themselves. To act according to the task at hand, they need to adapt to new
and, at design-time, unforeseen situations in an online manner, without maintenance or update periods.
This issue has been clearly articulated in a recent article [Dou04]:

[...] the major design opportunity concerns not use of predefined context within a ubiquitous

computing system, but rather how can ubiquitous computing support the process by which

context is continuously manifest, defined, negotiated and shared?

As we move from one situation (context) to another, which does not necessarily need to correspond to
the physical location, our computer systems must adapt and learn new patterns of behavior.
It should be pointed out that the topic of proactivity in computer science is a controversial one, especially
in HCI; the general concept of context awareness itself has to be handled with care (cf. [Eri02, BD03]).
Because the estimated current or predicted future context and thus implicitly the actions started by the
appliance based on these assumption might be erroneous, they might need to be reverted by the user, pos-
sibly causing severe problems. Thus, proactivity in applications, when utilized for controlling actuators
with impact on the real world, must be exerted cautiously. However, the possible uses for predicted user
context in applications are manifold, ranging from simple reminder messages to emergency procedures
being started before an accident happens. This thesis is primarily concerned with techniques that enable
context prediction in embedded systems and leaves decisions about starting actions to applications built
on top of it.

1.1 Challenges

Already in 1999, the area of context awareness was examined in [Lae99] with a similar focus on context
awareness on embedded systems. This work laid ground for a separation of low-level sensor data from
high-level context information via automatic classification (clustering) of sensor data. A list of problems
has already been solved in this work, including a first review of suitable methods with focus on limited
resources and the unobtrusive involvement of users by labeling abstract contexts. However, for the gen-
eral case of making devices context aware, there is still a list of challenges to solve. A few general ones
have already been defined in [Sch02a] and are still applicable to current research:

• Understanding the concept of context.

• How to make use of context ?

• How to acquire context information ?

• Connecting context acquisition to context use.

• Understanding the influence on human computer interaction.

• Support for building context-aware ubiquitous computing systems.

• Evaluation of context-aware systems.

These challenges occur in every research project dealing with context awareness and some of them have
already been addressed by previous work, at least partially. Within this thesis, additional, more specific
challenges for this research were identified, as already presented earlier in [May04]:
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• Context recognition and prediction should be embedded in information appliances with limited
resources. This limits the set of suitable methods and algorithms significantly.

• Learning and adaption should happen online without explicit training, which also prohibits the
use of a number of powerful methods and algorithms that rely on batch training.

• User interaction should be kept to a minimum and be unobtrusive.

• Values gathered from typically available sensors are highly heterogeneous and thus many algo-
rithms for statistical analysis and classification are not directly applicable.

• Prediction should respect trends and periodic patterns in context history with a reasonable trade-
off between forecast accuracy and computational complexity.

Of these, the topic of context prediction is the most worthwhile but also the most challenging one.

1.2 Problem Statement

Our main focus of research is oncontext prediction. Context, in the field of pervasive computing, has
been defined in different ways, and an overview of the different definitions can be found in Section 2.1.2.
One of the first definitions of context in [Sch95] states that it comprises computing, user and physical
properties. In 2000, this definition got refined by adding time as fourth aspect [CK00]. The definition
adopted within this thesis is the one by Dey et.al. [DAS99], according to which context isany informa-

tion which can be used to characterize the situation of an entity, where an entity isa person, place or

object that is considered relevant to the interaction between a user and an application, including the

user and the application themselves. In [DA00], they suggested that, from the many different types of
context that can possibly be taken into account, a few are more important than others: location, identity,
activity and time, which they called primary context types for characterizing a situation. These four
types are only slightly different from other definitions, but explicitly highlight the importance of the
activity aspect in recognizing context. Building on this notion of context, the term context awareness
denotes that a device incorporates context information into its behavior. Taking current context into ac-
count allows a device to react to changes in its environment, but not to act in advance, before a context
change has been happening. We definefuture context awarenessas incorporating future, predicted con-
text into the device behavior and being prepared to future situations. This is also the focus of our work
and we can refine the problem statement as follows:

What are the necessary concepts, architectures and methods for context prediction in em-
bedded systems?

Thus, the research goal is to evaluate and, if necessary, develop methods for recognizing and predicting
context with the limited resources of embedded systems. An important aspect is that such a device must
be fully operational at all times.

1.3 Scope and Methodology

It has already been pointed out in 1994, in one of the earliest publications on context awareness, that
automatic reconfiguration is difficult and poses many problems [SAW94]:
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Systems that reconfigure based on context are subject to the same problems faced by re-

configurable systems in general. In addition, if the context is changing rapidly it may be

distracting to the user or impractical (due to performance) to adapt to every change. Also,

certain adaptions may confuse users, particularly if the context is incorrectly reported, if

the user is unaware of what context an application considers relevant, or if the context

changes during use. Future work should address these issues.

This thesis does also not address the general issue of reconfiguration, but concentrates on a basic infras-
tructure for providing high-level context information to applications. It is left to the applications what
the context information is used for; in many cases, simply displaying the current context and adapting
the user interface to it might be a better choice than automatically starting certain actions.
The general goal is to enhance interaction with mobile, small or otherwise limited devices in the context
of pervasive computing. In this thesis, the main focus lies on forecasting user contexts and actions by de-
riving knowledge from historical data. Although the developed concept and architecture is applicable to
arbitrary context-aware systems, this work is aimed towards personal information appliances, which are
typically small, mobile devices with limited resources and which are used within the field of pervasive
computing. Thus, real-world scenarios for evaluation are also taken from these application areas.

Research methods applied in this thesis are:

• Literature surveys and reviews.

• Qualitative comparison of classification and prediction methods and algorithms based on their
declared and/or determined properties.

• Quantitative comparisons of methods and algorithms based on quality measures.

• Design of models and architectures based on requirements and results obtained from literature
studies.

• Design and implementation of prototypes.

• Evaluation of concepts and architectures via prototype implementations.

1.4 Results

Within the scope of this thesis, a general concept for applying prediction methods to context-aware sys-
tems has been developed, based on the idea of interpreting abstract contexts as states, where a user or
device advances from one state to another. By monitoring these state changes and analyzing the emergent
context trajectory, it is possible to extrapolate into the future. This general concept has been refined into
a flexible, multi-layered architecture for context prediction, combining methods and techniques from
different fields of research. It is based on five steps: sensor data acquisition, feature extraction, classi-
fication, labeling and prediction. In these five steps, recognized current and predicted future high-level
context information is inferred from low-level sensor data. To demonstrate its flexibility and suitabil-
ity for solving the defined goals, it has been implemented in a module-based, cross-platform software
framework, already ported to multiple architectures of embedded systems. The research goal of cop-
ing with limited resources in embedded systems has been considered while designing the architecture,
resulting in an efficient implementation of the software framework.
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For selecting appropriate methods and algorithms for the main steps in the architecture, namely classi-
fication and prediction, a literature survey has been conducted to narrow the list of possible candidates.
Context recognition within the framework has already been fully implemented with an initial module
for classification which is appropriate for a large class of context-aware systems. For achieving a higher
classification accuracy in special application domains, additional classification modules can be easily
implemented and are loaded dynamically by the framework. For context prediction, multiple prediction
algorithms have been implemented and are readily available as modules within the framework. However,
current results suggest to implement further modules to provide a broad range of available prediction
methods. This will make it possible to select the most appropriate ones for specific applications.
An evaluation of the architecture and its implementation has been done with an extensive sensor data
set collected in a realistic scenario. For both the classification and the prediction step, different methods
have been compared quantitatively on the same data set to select the best algorithms for this scenario.
Because not all of those algorithms are currently available as modules in the framework, some have been
evaluated using Matlab and other available toolkits. The qualitative results of this evaluation demonstrate
that it is possible to predict future context with reasonable device resources, but suggest further research
to improve prediction accuracy in real-world scenarios. Context recognition data sets and a benchmark
for context recognition are currently being collected in a coordinated effort by multiple research groups
within pervasive computing. After completion, this benchmark should allow to effectively compare
different algorithms and methods and should strengthen future research on context prediction.

1.5 Organization

The remainder of this thesis is split into six chapters. Chapter 2 introduces “context computing”, ex-
plaining the notion of context awareness and its aspects and giving a motivation for and a definition of
proactivity in the area of context awareness. In Chapter 3, related work is summarized and this thesis
is positioned among and against other publications with regard to novelties in our approach and differ-
ences to previous work. The main part is Chapter 4, which defines the specific goals and presents the
general concept for context prediction and the architectural approach taken in this research project in
a top-down manner. After giving an overview of the context prediction architecture, its five steps are
explained in more detail, including surveys on classification and prediction methods. Chapter 5 then
shows design principles of the developed software framework, while details of the implementation are
given in an accompanying diploma thesis [Rad04]. In Chapter 6, an evaluation of the architecture and a
selection of methods for context recognition and prediction is presented. Finally, in Chapter 7 the thesis
is summarized by pointing out the main arguments and the scientific contribution and giving an outlook
on possible future research.
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Chapter 2

Context Computing

This chapter introduces the main foundation of the thesis:context computing. The termcontext aware-

nessdenotes the property of a system to adapt to context; we define context computing asthe combi-

nation of hardware, software and models to implement context awareness in computer systems. A short
overview of context in general is given, followed by a motivation on why context awareness can be used
to enhance current applications. Then, different definitions of context with regard to pervasive com-
puting are discussed and different aspects of context are examined. Finally, a definition of proactivity
within context computing is given to facilitate a further discourse on context prediction in Chapter 4.

2.1 Context

Context computing, as a research topic, is concerned with the realization, i.e. the conception, develop-
ment and implementation of computer systems that employ context awareness. It is one of the building
blocks of pervasive computing applications [Fer03c] and often presented as the key enabler for future
applications. Advantages of making applications in the fields of pervasive, ubiquitous or mobile com-
puting context-aware are obvious: user interaction and application behavior can be adapted to the current
situation, making devices and their applications easier to use and making more efficient use of the de-
vice resources. Many groups have presented their research on context computing and thereby laid solid
ground for further work.
Pervasive computing is generally concerned with the interaction between computer systems and the real
world, with the embedding of computing resources in real-world objects. Therefore, interfaces between
the physical and the virtual world mediate the mutual influence that both worlds have on each other.
Interfaces that transport information from the physical to the virtual world are calledsensors, interfaces
from the virtual to the physical world are calledactuators, as depicted in Fig. 2.1. Pervasive computing
applications that have an impact on the real world have to feature interfaces in both directions: sen-
sors for gaining knowledge about the environment and actuators to control certain physical properties
of objects. Context computing, situated at the input side of applications, is inherently concerned with
sensors as sources of information. But the use of context as a concept is not even limited to any sensing
technology. The general approach can be used for arbitrary computer systems, possibly even without
explicit user interaction. Although context computing stems from sensor and user interface centric re-
search, it could in principle also be used in embedded network appliances which only handle network
traffic, embedded control systems, etc. The involved interfaces in such an environment would be virtual
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Figure 2.1: Sensors and actuators as interfaces between the physical and the virtual world.

rather than physical, providing contact to other parts of a larger system instead of directly to the real
world via sensors and actuators. However, most of the current research on context computing, including
this thesis, is directly concerned with sensors as interfaces to aspects of the real world.

2.1.1 Motivation for using Context Awareness

Context awareness stands for the ability of a system to adapt to its environment, which offers a number
of advantages and possibilities for new applications. One of the more intuitive advantages is ease of use;
if devices can adapt to their — or for personal, mobile information appliances their user’s — situation,
they can engage in more efficient user interaction. As its definition of “being aware of a situation” sug-
gests, context awareness means that devices can prevent interruptions at inappropriate times, like traffic
announcements from the car stereo bursting into a quiet passage of classical music or a conversation
between passengers. Other advantages may be less obvious, but context awareness can also lead to re-
duced energy consumption because devices only need to activate those components that are necessary
for operating in the current context. For mobile devices, this is even more important than for infrastruc-
ture components, because battery life, which depends on the average power consumption, is one of the
most important factors. Examples by means of prototypical implementations or empirical studies have
been given for the advantage of more intuitive user interfaces (e.g. [BGS01, DSAF99]), for reducing the
power consumption of large systems (e.g. [Moz98]) or for improving battery life (e.g. [Lou01]).
In [Dou04], a number of reasons were presented why context awareness could enrich current computer
systems by providing better user interaction and it has been argued why many systems still fail to do so;
but the following quote pinpoints deficiencies of current systems:

[...] by incorporating notions of context into interactive technologies, those technologies

can be made more sensitive to the details of the specific settings of use, which social sci-

entists have often pointed out in critiques of conventional system design. Social scientists

have argued that traditional interactive system design often rigidly fails to respond to the

setting in which action unfolds [...]

We think that context awareness, and more specifically context prediction, can offer decided advantages
for future applications, allowing them to address those deficiencies.
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2.1.2 Definitions

Although — or maybe rather because — context computing as a research field is still young, there are
currently many different definitions of context. First of all, the term context is found quite regularly in
common language use and is defined by Merriam-Webster’s online dictionary in a generic way [Web]:

1 : the parts of a discourse that surround a word or passage and can throw light on its

meaning

2 : the interrelated conditions in which something exists or occurs

Within computer science, the FOLDOC (Free On-line Dictionary of Computing) describes context
as [Fol93]:

That which surrounds, and gives meaning to, something else. In a grammar it refers to

the symbols before and after the symbol under consideration. If the syntax of a symbol is

independent of its context, the grammar is said to be context-free.

The usage for describing grammars seems to be the oldest use of context in computer science, which de-
scribes why the FOLDOC definition is centered around this use. But it can still be seen that the general
definition given by the first sentence is valid for current uses of the term in context awareness, which
will be explained in the following. The general term context is also used in other fields of computer sci-
ence: for compilers, there is a distinction betweencontext-freeandcontext-sensitivegrammars [Cho59],
whereby a context-free grammar can be accepted by a push-down automata and a context-sensitive one
can not (instead, a linear-bounded Turing machine is necessary). To prove that a formal language is not
context-free, the so-called pumping lemma is used, but it is difficult to prove the opposite. In operating
systems and microprocessor design, acontext switchdenotes switching from one thread of execution
to another one [SG97] and typically involves saving and restoring processor registers and memory re-
gions. Applications can be interrupted and return to their state of execution at a later time, enabling the
preemptive multi-tasking concepts of current operating systems to achieve a quasi-parallel execution of
multiple application. Next,context sensitive menusare a well-known concept in HCI, distinguishing the
flexible “anywhere” menus from pull-down menus associated with a fixed menu bar. The advantage of
context sensitive menus is that they are variable in place and content, depending on the current state
of the application and area of invocation. First uses of context sensitive menus can be tracked down to
Smalltalk, where this concept has been termed “pop-up menus” (cf. [Gol84]). A highly technical term is
thebundle contextwithin the OSGi standard [OSG03], which is provided to every component that is de-
ployed in an OSGi compatible container. Using this context, components can access their environment,
which includes services provided by the container itself and other components installed in the container.
There are undoubtedly many other uses of the term context in computer science, but those are mostly
similar to one of the meanings above.
The newer Wikipedia [Wik] already has a definition of context referring to the interaction between
devices and users, or more generally, the situations a device is used in:

Context is a term with numerous meanings and shades of meaning.

1. In archaeology, the context (physical location) of a discovery can be of major signifi-

cance. See Stratification.

2. In linguistics, context refers to the meaning of a word or phrase with regard to its place

in the sentence and the topic being discussed.
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3. In computer science, context refers to the circumstances under which a device is being

used, e.g. the current occupation of the user. (see also context awareness)

Before going into more detail of the term context in this last usage, the second term, namely “awareness”
should also be examined more closely. Merriam-Webster’s defines it as

1 archaic : WATCHFUL, WARY

2 : having or showing realization, perception, or knowledge

which already gives a good hint on how it is used in pervasive computing: that devices have and show (by
means of their behavior) perception of their environment. Wikipedia also offers an interesting definition:

In biological psychology, awareness describes an animal’s perception and cognitive reac-

tion to a condition or event. Awareness does not necessarily imply understanding.

Awareness is a relative concept. An animal may be partially aware, may be subconsciously

aware or may be acutely aware of an event. Awareness may be focused on an internal state,

such as a visceral feeling, or on external events by way of sensory perception. [...]

Pointing out the difference between awareness and understanding, it approves that research on context
computing must not necessarily create a full world model to be useful; understanding the environment in
terms of a model is no prerequisite to being aware of aspects of it. This also allows to better explain the
definition of awareness given by Paul Dourish and Victoria Bellotti in 1992 [DB92]. According to their
work, awareness isan understanding of the activities of others, which provides a context for your own

activity. Knowing activities of other people or systems involved in some task is important to put ones
own behavior into context. However, as has happened with many terms in computer science, awareness
was used for describing different things. Having become overused most notably in CSCW, it is important
to ask “awareness of what?”, as has been pointed out in [Sch02b]. This gives rise to the compound term
“context awareness” now being used within pervasive computing to describe that a system is aware of
its context of use.

Since there is, at this time, no common, specific and detailed definition of context within this area, it is
reasonable to refer to those being currently used. The following set of definitions is neither exhaustive
nor in order of importance, but should reflect the most prominent definitions. It is clear that the notion
of context developed alongside the research projects and that it is still evolving as new aspects are
investigated.

In their classical paper, Bill Schilit, Norman Adams and Roy Want at Xerox PARC laid ground for many
following publications on context computing [SAW94]. Their early definition of context is one of the
more general, clearly defining context to include more than merely geographical position information:

Three important aspects of context are: where you are, who you are with, and what re-

sources are nearby [...]. Context encompasses more than just the user’s location, because

other things of interest are also mobile and changing. Context includes lighting, noise level,

network connectivity, communication costs, communication bandwidth, and even the social

situation, e.g., whether you are with your manager or with a co-worker.
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Although this definition clearly states that context has many aspects, the main criticism is the restric-
tion of “important” aspects to computing, user and physical context. But for our current research, the
exemplary list of other aspects gives hints on which sensors could be added to our case studies.

In [BBC97], Peter Brown, John Bovey and Xian Chen at the University of Kent suggest a classification
of context aware applications intocontinuousand discrete. Within this classification, we are mostly
concerned with discrete context as the sensors are sampled at discrete time steps. The transition to
continuous context depends on the application: if context-dependent information is displayed almost in
real time, we can interpret it as continuous context even if sensors are still sampled at discrete, albeit
very small, time steps. In their description of a context aware application, they present a model of
context defined as a DTD (Document Type Definition). This DTD defines tags for context dimensions
and is extensible for different applications. Concepts of hierarchical context dimensions are mapped to
a naming scheme for context attributes. The idea of using an open DTD is intriguing because such an
internal representation of context could be easily externalized and made accessible to applications or
other devices.

James Crowley, Joëlle Coutaz, Gaeten Rey and Patrick Reignier, while defining an ontology for model-
ing context [CCRR02], distinguish between user context and system context. The user context is defined
by the goals which are pursued by the user while interacting with a system, whereas a user may have
many different goals in parallel and can switch between those goals. On the other hand, the system
context is composed of a model of the user context and a model of its own internal context, where the
model of the user context determines the interpretation of observations and the model of its own con-
text allows to hierarchically structure context models. The system context is at the top of the hierarchy,
and the user context at the bottom, itself being composed of observations. An interesting discourse on
the use of context in natural language processing and AI is given in an introductory section, where the
authors describe how the “frame problem” in AI developed into the “grounding problem”. This change
in the notion of context motivated researchers to move from a linguistic view of context, i.e. the frame
of a symbol, towards a view based on action, which is also more closely related to how we use context
in our work.

In his PhD thesis [Sch02a], Albrecht Schmidt presented a “working model for context-aware mobile
computing”, which is basically an open, extensible tree structure. The proposed hierarchy of features
starts with distinguishing human factors and the physical environment and ramifies from there. Orthog-
onally to this hierarchy is the time, providing a history of previous feature values. Schmidt argues that
it is a general challenge to identify the set of relevant features for a situation. This remark completely
applies to our work and is one of the most critical issues for automatic, unsupervised recognition of
context (cf. Section 4.6.2).

In [SBG99], Michael Beigl, Hans-Werner Gellersen and Albrecht Schmidt distinguish betweenexplicit

andimplicit context, defining explicit context as one that is queried directly from the user and implicit
context as the automatically recognized one, derived from sensors and application behavior. In this
thesis, the notion of context is actually both: the primary motivation is to derive context from user
behavior (implicit context), but the user has the possibility to assign descriptive labels to automatically
constructed, abstract context classes (explicit context).

In a very recent work [HLA+04], Lonnie Harvel et.al. describe the context cube, an application of data
warehousing methods to context computing. Basically, all context dimensions are used as attributes in
a relation (i.e. database table) and are thus recorded as the combination of values. By defining all mea-
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sured values as key attributes in the table, they can associate additional dimensions for computed values,
named “derived context”. On such a context relation, well-known cube operations from data warehous-
ing can be supported. In this model of context, it seems difficult to directly support non-atomic context
dimensions (e.g. a list of devices in range), but the cube operations should allow an easier extraction of
high-level information from the low-level sensor data. It needs to be evaluated if a context cube can be
constructed with an upper memory bound, suitable for usage in embedded systems; the low-level sensor
data could be stored in an aggregated cube along with the recognized context classes as derived context
(cf. Section 4.2), facilitating data mining techniques for more effective context prediction.

The termcontext atomhas been used by Jani Mäntyjärvi, Johan Himberg and Pertti Huuskonen
in [MHH03] (after being introduced by Johan Himberg et.al. in [HKM+01]) to describe basic context
dimensions which are derived from low-level sensor data by pre-processing. After the pre-processing,
which consists of feature extraction and fuzzification, a context atom is simply represented as a contin-
uous, normalized value. This definition is very similar to the internal use of features in this thesis. An
atom vectorclosely resembles a feature vector in our architecture (cf. Section 4.2).

One of the most prominent definitions of context has been given by Anind K. Dey et.al. in [DA00].
Context has been defined as

any information that can be used to characterize the situation of an entity, where anentity

is a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and application themselves.

In this thesis, we adopt this general definition of context, which seems to become accepted by most of
the community (e.g. [CCRR02, FBN01, GPZ04b, GWPZ04]). We understand context as describingthe

situation a device or user is in, identified by an abstract label and defined by the combination of sensor

values.

Context

OutputsInputs

Environment

Figure 2.2: Context of a black-box system

As depicted in Fig. 2.2, a system, seen as a black box, has some inputs and outputs which define the
normal functionality of the system. Context, however, describes the influence of the whole environment
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on the system, including the sources of inputs and destinations of outputs, or, as described in [LS00],
Context is everythingbut the explicit input and output. Context is what surrounds a device and thus,
all of its possible aspects can not be enumerated for the general case. It even includes the internal
state of the system, leading to a form of self-awareness. In a more detailed view of computer systems
in pervasive computing, we can concentrate on the internal influence of context onto the system. As
discussed earlier and shown in Fig. 2.1, a computer system observes its environment via sensors and
controls it via actuators. Context computing is situated at the input of the system, providing high-level
information about the environment to applications, which in turn control certain objects via actuators, as
depicted in Fig. 2.3. Thus, we are concerned with extracting high-level information that is meaningful to
applications from low-level sensor data. In the following section, we shortly discuss the different aspects
of context that describe a situation.

ContextSensors

Application Actuators

Figure 2.3: Using context within a system

2.1.3 Aspects

In general, context of a user or device, which are similar in the case of body-worn or close-to-the-
user information appliances like mobile phones, can not be confined to only location (cf. [SBG99]).
There are many aspects which describe the whole context — some of them are important to a specific
application or for uniquely identifying a situation, others are not. However, for an architecture for context
recognition, we can not restrict ourselves to any aspect of context but must support arbitrary ones. In
general, we can identify at least the following aspects of context (an earlier list of aspects has first been
presented in [MRF03b]):

• geographical (e.g. country, street, building, floor, office)

• physical (e.g. lighting, noise level, temperature, acceleration, tilt)

• organizational (e.g. institution, department, group, project)

• social (e.g. family, friend, co-worker, married, single)

• emotional (e.g. heart rate, skin conductance)

• user (e.g. profile, location, capabilities, role, access rights)

• task (e.g. documenting, programming, building a house)

• action (e.g. typing, reading, walking, sitting, talking)
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• technological (e.g. connectivity, network bandwidth, network latency)

• time (e.g. time of day, weekday, week, month, season of year)

Different applications demand the awareness on different aspects of context, e.g. a multi-modal com-
munication application will depend on the network context (technological), while a tourist guide will
be more responsive to geographical context. As described in more detail in Section 4.4, a single sensor
does not seem to be appropriate to capture all the different aspects of context. Instead, a multitude of
sensors will be necessary to gather even a small subset of the rich aspects of a user or device context.

2.1.4 Context in Time

The term context awareness itself does not state whether a device is aware of its past, present or future
context; we specifically consider the predicted future context. Past and current context have been con-
sidered by previous work, e.g. explicitly in the model of context presented in [Sch02a]. In our work,
we do not store a complete history of past contexts because of memory limitations of embedded sys-
tems. Instead, past context is used to derive user behavior and to extrapolate current context into future
context by applying this derived knowledge. This general methodology is independent of the prediction
algorithm, sliding window approaches can be used as well as online update of prediction models.

2.2 Proactive Context Awareness

The term proactivity has been used in computer science most prominently for software agents, where
one important difference between agent oriented programming and object oriented programming is
the proactivity of software agents. There are two notions of software agents, the “weak” notion and
the “strong” notion. The former is a general way of defining agents and includes autonomy, social
ability, reactivity, proactivity, temporal continuity and goal orientedness. The latter specifically describes
computer systems and demands the additional properties of mobility, benevolence, rationality, adaptivity
and collaboration. For more details on the definition of agents, we refer to [WJ94]. Even in the weak
notion of the agent concept, proactivity is one of the basic features, but is related to reaching the goals
of a software agent — an agent is considered to be proactive if it takes initiative to reach its defined
goals. In pervasive computing, goals are defined by the user of the system and applications should aid
the user in pursuing them. A general definition could be “that proactivity is the active processing on
how to reach the desired situation” [Toi00], which, stemming from agent oriented programming, is also
applicable to context-aware systems. For information appliances in the field of pervasive computing, the
ultimate goal of the system is to support the user in saving time. It should be noted that, in this thesis, the
term proactivity explicitly describes the use of prediction techniques to refer to future contexts. In other
publications, the term proactivity has been used with regard to context with a different meaning, namely
for describing the automatic triggering of actions when some context becomes active, e.g in [BBL+00]
for types 1 and 4 of their six types of context-aware applications.

Proactivity and reactivity are two sides when classifying systems, but on the other hand, they are not
mutually exclusive. For different aspects of a system (e.g. for different applications building upon a
context-aware middleware), either reactivity or proactivity might be more important. E.g. for user inter-
faces, reacting to changes in user or device context will be more appropriate than adapting the interface
in advance, while the user is still using it in the old context. Other applications can definitely benefit from
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proactivity, when reacting to changes in the environment is not enough to provide reasonable services
to the user. In the following section, a few important application areas are discussed where proactivity
offers decided advantages.

2.2.1 Motivation for using Proactivity

At the current state-of-the-art, we can investigate a few application areas within the field of pervasive
computing where future context awareness offers added benefit. These application areas are, on an
abstract level:

• Reconfiguration: System reconfiguration in general, not being restricted to context-based recon-
figuration, is today one of the most time-consuming tasks associated with computer systems.
We can further distinguish betweenlight-weightandheavy-weight reconfiguration, where light-
weight reconfiguration includes modification of the system configuration or general online, near
real time adaptation to changed environments. In the following, we will focus on heavy-weight re-
configuration, which includes tasks that impose a noticeable delay during reconfiguration, leaving
the system in question out of service until reconfiguration has finished. Boot-up of systems, instal-
lation or update of applications, maintenance and infrastructural changes, downloads, searches in
large databases, etc. all consume, or even waste, significant amounts of valuable work-time. Any
progress towards shortening these reconfiguration times yields a direct improvement for the in-
volved people.
An example for a current application in this area that exploits context prediction in a very
application-specific way is implemented in current upper-class BMW cars. Whenever its key
comes into spatial proximity of the car (even before being used to unlock the car via the inte-
grated remote radio control), the on-board navigation system starts its boot-up and initialization
phase, which can take up to roughly 30 seconds. This way, the navigation and infotainment sys-
tem is fully available when passengers enter the car. Another desirable scenario along the same
lines would be the desktop computer being booted up and having all required applications loaded
when the office is entered (but without running during the night and thus wasting resources).

• Accident prevention: An accident can be seen in the general case as an undesirable system state,
and preventing such undesirable states has applications in many different areas. E.g. in telecom-
munication, an undesirable state is an overload in some network equipment or communication
link. Load prediction is already used by larger telecommunication cooperations to prevent system
failures by proactively updating or bypassing highly loaded systems in time. In medicine, there
is a vast multitude of undesirable or dangerous states and situations than can be monitored with
bio sensors and should be predicted to prevent permanent damage. However, it is important to
point out that within our approach, such an undesirable situation must have already occurred in
the past to be predicted. Lacking an application-specific model of desirable and undesirable sit-
uations (which is omitted on purpose within the scope of this thesis), it is only possible to learn
from past situations by means of a context history. Yet unknown contexts can not be predicted in
a general, application-independent way. Thus, we strongly advise against using this approach for
prediction and prevention of undesirable states in safety-critical systems.

• Alerting: This is best known from the domain of PIM (Personal Information Manager) type appli-
cations, including calendar, project management, scheduling, appointment and group coordination
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systems, but includes arbitrary applications that need to alert users in some form. These systems
already provide a multitude of alerting capabilities, ranging from message boxes bound to being
displayed on desktop computers or PDAs, signal lights, audible notification to sending emails,
SMS or pager messages to user’s mobile devices. However, events leading to such alerts are ei-
ther triggered by certain actions (e.g. a colleague entering a virtual meeting room) or have been
scheduled in advance, being entered in a calender. When being able to predict future context, a
device can autonomously issue alerts before some relevant contexts occur, without the need for
manual scheduling.

• Planning aid: Simply displaying predicted future context in a structured way and allowing to
interactively browse it can provide a powerful aid for human-driven planning and scheduling.
This puts people in the control loop, allowing to manually modify system behavior, but being
assisted by predictions of future situations. Due to their informational nature, applications from
this area will demand an estimation on the probability of the predictions being true, i.e. on their
certainty (cf. section 4.8.1), which might not be strictly necessary for other application areas.
This limits the choice of prediction algorithms to ones that are based on probabilistic concepts
and disqualifies simpler variants.

From these general application classes, we take one more specific scenario for a variety of reasons.
First of all, it constitutes a “living laboratory” approach, with researchers being the subjects in the
evaluation while the scenario can be refined iteratively by them. Additionally, we only use sensors
and other hardware which are available off-the-shelf and resign from developing custom devices as to
demonstrate the feasibility of an approach building on currently available technology. And last but not
least, it is a scenario taken from everyday life and should thus assist in communicating the concept of
context prediction to a wider audience.
Our scenario is based around a fictitious employee, Alice, working primarily with information technol-
ogy and is taken from the reconfiguration application area. Her desktop and work space is dominated
by a desktop computer used for most of the work. Additionally, she owns a smart phone, i.e. a mobile
phone capable of running custom software and with communication technology like GPRS, Bluetooth
or WLAN. Using various sensors such as lightning, microphone, its GSM interface, the built-in camera
and Bluetooth, the smart phone can automatically recognize current and predict future context while its
user advances from one situation to another. When Alice is waking up in the morning, the device detects
this due to picking up noise and can, now being in the context “getting up” already (reactively) fetch the
newest headlines using her home WLAN while Alice spends time in the bathroom. When switching to
the context “getting up”, the device has already predicted that in roughly 15 minutes Alice will use the
device to read today’s headlines while having her breakfast (because she has done so regularly for the
last 2 months). Thus, 5 minutes before this context “having breakfast” will be entered, the smart phone
sends an event to the coffee maker to start brewing fresh coffee. After Alice has finished reading news
items, she puts the smart phone into her pocket and leaves for work, which the phone recognizes as
context “going to work”. Although she does not start working at regular times, sometimes before 7:00,
at other days around 11:00, the smart phone can now already contact the company gateway over GPRS,
initiating a boot-up of her desktop machine 10 minutes before she is expected to arrive (by predicting
the time she will be spending in the context “going to work” from the mean time it took during the last
months). Context prediction in this sense does not only save time for Alice. Co-workers who want to
know when she is likely to be in the office need no longer call her on the mobile phone, potentially
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Figure 2.4: Proactivity vs. reactivity

disrupting her way to work, but can simply query to prediction of when she will likely be in the context
“at work”.
This simple scenario shows how automatic context prediction could be used to save valuable time
by making devices proactive with regard to context. Additional operations that consume significant
amounts of time like synchronizing the home computer with the company network could also be per-
formed automatically before the user will arrive at the new location. In general, we try to provide a
middleware for context prediction and leave it to the creativity of application designers which actions
should be initiated based on predicted, high-level context information.

2.2.2 Definition

The following definition of proactivity has also appeared in [MRF03b, MRF04b].
Formally, the difference between reactivity and proactivity can be seen in the dependence of the current
system output on the system state trajectory (cf. Fig. 2.4). If interpreted as a (Moore) state machine,
the internal “state” of a system at timet can be described asqt = δ〈qt−1,at−1〉 , whereqt is the current
state,qt−1 is the last state andat−1 is the input value at timet−1 (cf. [Pic75]). In this definition, system
inputs and state transitions are assumed at discrete time stepst ∈N0. The system output depends on the
state, and this is how the difference between reactivity and proactivity is defined in the context of this
thesis. In a reactive system, the outputbt at timet only depends on the current and — implicitly — on
past states:

bt = λ(qt)

In a proactive system, it can also depend on predicted future states:

bt = λ
〈
qt ,qt+1,qt+2, ...,qt+m

〉
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The future statesqt+1, ...,qt+m for m discrete time steps are predicted recursively by some arbitrarily
complex processqt+i = p

〈
qt ,qt+1, ...,qt+i−1

〉
; if only qt is needed for predicting anyqt+i , thenp can

simply ignore the predicted statesqt+1, ...,qt+i−1.
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Chapter 3

Related Work

This chapter presents recent research projects and groups which are related to context computing in
general or more specifically to context prediction. For a good survey considering related work until
2000, we refer to [CK00]. Nonetheless, the most important pioneering projects which helped to define
the notion of context awareness and/or had great influence on the development of this field are briefly
listed in Section 3.2. Other related work regarding specific steps in our architecture or used methods
and algorithms is mentioned in Chapter 4 where appropriate, including publications concerning the
classification and prediction methods that were used as the base for our literature survey. Some of the
presented material has been published in [MRF03b, MRF03a, May04, MRF04b].

Before going into more detail about the specific projects and their relation to this thesis, a few general
remarks on parts of the developed architecture shall be mentioned. Our general architecture for context
recognition is very similar to the one presented in 1999 in [Lae99], but with improvements towards
continuously running devices and the addition of context prediction. The term context prediction itself
has been used by different research groups, but, as explained in more detail for the related projects, most
predictions are performed for lower-level location information. We aim to predict high-level context
identifiers, i.e. classes of situations a user or device usually is in. E.g. Jan Petzold et.al. refer to context
prediction [PBTU03a, PBTU03b, PBTU03c, PBTU04] when in essence it is location prediction, but on
a qualitative instead of quantitative level (in the same way we are using context identifiers to predict the
next abstract context).
The notion of feature extraction, one of the cornerstones of current work on application- and sensor-
independent context awareness, has been applied in a similar way in [CP98, CSP98, Hea03, MHH03].
However, feature extraction and sensor fusion have also been studied extensively in the field of robotics,
but with focus on geometrical properties of the environment [Bru99]. For context computing, the dif-
ferent sensors deliberately capture different aspects of the environment (cf. Section 4.4). According
to [Bru99], this contradicts the definition of sensor fusion. Thus, in the opinion of the author, sensor
fusion can currently not be applied successfully within context computing with state-of-the-art context
“world models”. To achieve redundancy and quality improvements by applying multiple sensors which
capture the same aspect of context, a common model of quantitative context data will be necessary.
Applying fusion techniques at a higher level of abstract context identifiers seems more realistic than at
the level of sensor data processing. In robotics, similar considerations have been articulated [BFB94]:

Sensor data-level fusion, that is fusing data at the sensor level is in general only feasible

between identical sensory devices, all having the same perspective. Feature (or primitive)
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level sensor fusion however, provides a reasonable level of abstraction.

Although feature extraction and classification are well-known in different fields of research, covered
by standard literature (e.g. [Bov00, Nel01]), most publications only cover numerical, continuous fea-
tures. For context computing in mobile devices, systems with custom sensors (e.g. accelerometers, light
sensors) often use minimum, maximum, mean and variance as features (e.g. [Lae01]). Because the re-
striction to numerical features severely limits the choice of sensors, we introduce a model for utilizing
heterogeneous features (e.g. list of MAC addresses and WLAN ESSID) in a common classification step
(for details, cf. Section 4.5). For a Kohonen SOM, a method has been described to cope with hetero-
geneous input values [NB01]. However, the general case of context recognition with heterogeneous
features does not seem to have been covered before and is one novelty in this thesis.
Time series forecast has been explored in different areas, including distributed simulation [Fer99],
software agents [RC98], data value prediction in processors [SS97], data mining from health
records [WLW01] and theoretically for neural networks [TF93]. Therefore, we are not developing new
methods for time series analysis or prediction, but applying appropriate, known methods.

3.1 Projects and Groups

Context computing is still being defined by different research groups and in different projects. Thus, it
is reasonable to review what has been done recently, but it would not be sensible to split research groups
from current projects while some of them still define their focus and some research groups are not clearly
distinguishable from project groups. The following list of projects is non-exhaustive and by no means
complete, as there have been too many publications to list which were dealing with context computing
in some way during the last few years. It should present those publications that are more closely related
to the main parts of this thesis: general frameworks and middleware for context computing, work on
context prediction and work on dealing with context on embedded systems with limited resources.

TEA

The Technology for Enabling Awareness (TEA) project was a joint project between Starlab NV/SA
in Belgium, TecO at the University of Karlsruhe in Germany, Omega Generation at the University of
Bologna in Italy and Nokia Research in Finland (http://www.teco.edu/tea/). Its aim was research
on context awareness with handheld and wearable devices with a focus on low-cost sensors and mobile
phones [Lae99]. The project has developed a hardware board for collecting sensor data and connected it
to a standard mobile phone. The term “adaptive context awareness” has been used to describe the use of
machine learning algorithms on low-level sensor data; those algorithms should adapt to frequently seen
user contexts. One of the project goals also was unobtrusiveness, i.e. to demand as little human super-
vision/attention as possible. An architecture has been described that builds on a combination of SOM
and k-means clustering, at the disadvantage that the number of context classes detected by the SOM
was static. This static and pre-defined number of classes as well as the proneness of the SOM to forget-
ting previously learned clusters necessitated a second, higher-level clustering step. However, even with
a variable internal topology due to a variable number of classes, the presented approach might not be
suitable for running continuously in the background. As described in [Lae01], it is necessary to decrease
the learning rate of the SOM to get stable results. In a continuously running online application, it is not
possible to steadily decrease or increase parameters; only dynamic adaptions of parameters are possible.
The principal architecture in this thesis is similar to the one used in TEA, but aimed towards life-long
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operation and extended by the context prediction step. In [Lae99], a simple Markov chain model is
used on top of the higher-level k-means clustering step to increase the context recognition accuracy.
This simple form of prediction via a 1-step Markov model helps to resolve ambiguities between context
classes when switching from one context to another (by taking the most probable successor of the last
context into account when computing the current context class). In our work, the prediction step is not
only used as another indicator for detecting the current context, but is used to actually forecast future
context. Additionally, we intend to improve the architecture by a clear definition of abstract interfaces
between its steps to simplify the exchanging of methods.

Smart-Its

The project Smart-Its [GSB02] is building on the experiences gathered with the MediaCup [BGS01]
and the TEA projects. It changed the focus of their research from context awareness in single devices to
ad-hoc networking of context-aware devices. Smart-Its, as an experimental hardware platform, integrate
sensing, processing and communication capabilities into a single, small device. Their design is modular,
separating the “sensor unit” from the “core unit”, which provides processing and communication. With
Smart-Its, ad-hoc networking, sharing of context information and sensor fusion across devices are in-
vestigated. To support the rapid prototyping of applications, additionally tackled issues are to minimize
the physical size and power consumption and to use Bluetooth for communication to ensure interoper-
ability with consumer devices. A worthwhile topic for future research is to evaluate if the concepts and
methods developed in this thesis could be ported to run on the Smart-Its platform, which constitutes
low-end embedded systems that are still capable of processing sensor input.

GUIDE

The GUIDE system is a cell-based location system, broadcasting dynamic information to mobile units
with a web browser [CDM+00]. Using the IEEE 802.11 wireless LAN standard, the infrastructure is
open and flexible and can be used by a wide range of clients. Location information is transmitted by
the base stations, which restricts the accuracy of location information to the coverage area of WLAN
access points (up to 300m). With current state-of-the-art WLAN base stations, a finer resolution could
be achieved by analyzing the respective signal strength from multiple base stations. The displayed in-
formation depends on personal (i.e. interests, location) and environmental (i.e. current time, opening
hours of attractions) context and acts as a location-sensitive tour guide for visitors in Lancaster (UK).
One interesting experience from the field trial in this project was that context-aware systems should not
be constrained too much with regard to current context. The first versions of the user interface running
on the mobile units were only allowing to access information that was associated with or relevant to the
current context. However, users were dissatisfied that they could not access other information and ser-
vices whenever they desired to. Thus, one of the experiences of GUIDE was that context-aware systems
should allow to access certain important information or services at all times.

IST CONTEXT

The main objective of the currently ongoing CONTEXT project (http://context.upc.es) is to en-
able development of context-based services in active networks. The publications that are publicly acces-
sible at the time of this writing indicate that the project is network- and infrastructure-centric [XRCA04]
and utilizes mobile agents [YGT03]. Therefore, it is not comparable to our approach of making devices
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context-aware without requiring any infrastructure, but has fairly different goals. Despite the different
goals, the necessity of a middleware to decouple applications from the acquisition of context has also
been identified in this project, which is called “Context Management System (CMS)” in [XCS+04] and
is based on database management systems. The project is currently working on an execution environ-
ment based on active networks which should provide a context awareness middleware to applications.

Equator

The Equator Interdisciplinary Research Challenge (http://www.equator.ac.uk/) is a six-year
project to promote the integration of the physical with the digital world. By developing “experience
projects”, they tackle three research challenges which have been defined for this project: “interaction”,
“devices” and “infrastructure”. Within this scope, devices like the Bristol Cyberjacket [RM02] have
been developed or applications like weight surfaces [SLS+02] have been built. A publicly available
framework for C++ and Java, called Equip, supports a shared data service for inter-application commu-
nication and event handling and has already been used in a few applications within the project. Context
is used within Equator partly for user interaction with real-world objects (like the weight surfaces), but
most work has focused around context in embedded systems [BR02, CCLG02, LSG02].

Georgia Institute of Technology (US)

The “Aware Home” is built as a living laboratory for empirical research on ubiquitous computing, with
the goal to sense contextual information about itself and its inhabitants [KOA+99]. One of the motiva-
tions for this project is to enable support for elderly to be built into their homes. Kidd et.al. reported
about the status of this project, which should also learn user’s habits, but it was not finished at the time
of this report. The Context Toolkit [SDA99, DAS99] has been developed to support work on the Aware
Home project. Consequently, it is a very flexible framework for abstracting context sensing from appli-
cations in a distributed, heterogeneous network environment. Aimed towards context sensing embedded
into the infrastructure, it uses HTTP and XML for communication between sensors (represented by their
“context widgets”) and higher-level components (named “aggregators” or “servers” and “interpreters”).
It is not directly addressing context prediction or targeted at embedded systems; we aim to implement
context recognition and prediction locally at each device, without the need for infrastructure compo-
nents, while the Context Toolkit intentionally is an infrastructure approach for context sensing. The
Conference Assistant [DSAF99] was one of the prominent applications built upon the context toolkit.
There are some limitations of the context toolkit, described in [DAS99]: it does not support continuous
context and does not deal with unreliable/unavailable sensor data.

Exeter (UK)

At Exeter, context awareness was applied to the field of information retrieval to improve the relevance
of retrieved information with regard to the user’s situation. In [BJ02] they suggest that the current con-
text is often changing gradually and thus is “semi-predictably”. However, their notion of proactivity
describes only the retrieval of documents when conditions based on the current user context are met.
Thus, it should rather be described as beingreactive with regard to context. Nonetheless, their devel-
oped “Context Diary” keeps track of previous contexts, which is used for predicting future aspects of
the user context. They were restricting their selves to gradually changing and thus easily predictable
aspects of context (they give the examples of location and temperature). For context-aware retrieval,
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advantages of predicting aspects of user context were identified in this work, but they do not seem to be
generally applicable to context prediction. A prototype system for context-aware information retrieval
has been built, but at the time of this writing it does not represent a general framework for developing
context-aware applications.

MIT Media Lab (US)

In [CMP00], Brian Clarkson et.al. describe a wearable system with a video camera and a microphone,
capable of distinguishing coarse locations (although it is stated that the approach is not restricted to
location). Similar to their previous work [CSP98], they used Hidden Markov Models (HMMs), which
are a well-known technique for recognizing time series, as a basic model for recognizing context. After
feature extraction (cf. Section 4.5 for a detailed explanation), they used unsupervised clustering (cf.
Section 4.6) to distinguish between user contexts; this approach is very similar to the one taken in our
architecture, but has been implemented only for audio and video. Because of their method selection,
there was also the distinction between a training and a test phase, which we explicitly seek to avoid as it
lacks adaptability.

MavHome

The MavHome project [CYEOH+03] by Diana J. Cook et.al. aims to create an agent-based intelli-
gent home with a vision in the spirit of the Aware Home. Their multi-layer architecture consists of
a “physical” (i.e. sensors), a “communication” (i.e. network), an “information” (i.e. database) and a
“decision” layer and is based on CORBA for remote method invocation. This architecture is similar
to the one used in this thesis, as it is also a bottom-up structure for recognizing context. The distin-
guishing factor of MavHome is its use of different prediction methods to automate actions within the
house. Although the Neural Network Home also applies machine learning to predict inhabitant ac-
tions, there is a more detailed examination of prediction in the MavHome project. They have developed
different algorithms for categorical time series prediction (cf. Section 4.8.3): SHIP [CYEOH+03], a
simple sequence-match algorithm, Active LeZi [GC03], a prediction by partial match algorithm based
on Markov models, TMM [CYEOH+03], a Markov model based on higher-level action sequences and
Episode Discovery [HC03, DCB+02], which uses data-mining techniques and the minimum description
length principle to predict periodic patterns. Those different prediction algorithms are used to forecast
user actions, but parts of the prediction seem to rely on database support and batch training, i.e. it does
not seem to be possible to use them in an online manner.

Aura Project

The Aura project [GSSS02] at CMU (Carnegie Mellon University, US) aims to build a “distraction-
free”, i.e. unobtrusive, ubiquitous computing environment. It is an umbrella project with different sub-
projects collected under its central goal, including well-known projects like the Coda file system [Sat90].
Proactive adaptation of applications has also been explored in [JS03], which describes CIS, the “Con-
textual Information Service” as a lightweight interface to obtaining context information. Their notion
of “Contextual Information Providers” can be compared to feature extractors in our work, described in
Section 4.5, or to “cues” in the TEA project. However, CIS follows the approach of adapting the en-
vironment (i.e. infrastructure), while we intend to adapt the device to a changing environment, which
includes changing user behavior. The use of meta-attributes in CIS at the level of context primitives
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seems to be an interesting concept; we currently use confidence as a meta-information only at higher
levels (after classification and after prediction).

Portolano

The Portolano project [EHAB99] is a testbed for invisible computing at the University of Washington
(US) and also divides into a few sub-projects. Related to context awareness is the "Location Stack", a
layered model for handling location [HBB02]. In [Hig03] the challenge of automatically labeling and
predicting location based on previous work like the Location Stack is described. This is closely related
to the focus of this thesis, but we try to generalize from predicting location to predicting context.

Nexus

Nexus is a research project on context awareness (http://www.nexus.uni-stuttgart.de/) at the
University of Stuttgart (DE) that aims at theoretical foundations for context awareness as well as context-
aware applications. They have already defined various XML schemata for representing and querying
context data, but most of their results cover mobile and ad-hoc networks and location-based services,
only a few include aspects of context other than location. Nexus is focused on location, while in this
thesis, location is regarded as one of many different aspects of context. However, hardware prototypes
with different sensors like temperature, humidity or brightness are also considered in more recent pub-
lications [BBHS03] (incidentally also called “ContextCube” like a model already presented in Sec-
tion 2.1.2).

Sentient Computing

The Sentient Computing project (http://www.uk.research.att.com/spirit/) uses a building-wide
ultrasonic location system with mobile devices called "bats" and a fully covering space model of the
building. Using information extracted from this location system (user identity, location and nearby per-
sons and things), documents are tagged with meta data to ease a later "context-aware" information re-
trieval. As a building-wide project, it can rely on powerful infrastructure support like database systems
for storing context information.

ETH Wearable Lab (CH)

WearNET [LJS+02] is a distributed, multi-sensor system for wearable computers to collect context in-
formation. It uses multiple motion sensors worn on the body, a microphone and other simple sensors
like temperature, humidity and atmospheric pressure sensors. With this system, the authors were able to
show that different situations and activities could be detected with their combination of sensors, but refer
to future work for automatically deriving high-level context information. This thesis presents one possi-
ble way to do this; it would be an interesting combination to use the presented framework on top of the
context collection from WearNET, since the framework has been designed for exactly such embedded
systems and a collection of multiple, simple sensors. Besides WearNET, there is additional research on
context recognition based on multiple simple sensors. Currently, much of this is done with accelerome-
ters, e.g. action recognition from accelerometers and microphones has been presented in [LWJ+04]. In a
workshop environment, they were able to recognize more complex actions than sitting, standing, walk-
ing etc. Actions at that granularity have usually been handled in previous research on action recognition.
However, they also used supervised learning methods (HMM for classifying the time series), requiring
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a second test subject to label activities during the experiments. In the opinion of the author, their use of a
detailed script for conducting the experiments during data collection should be followed when sampling
further sensor data. It has the advantage that sensor values which mark a specific context are at least
roughly reproducible by different test subjects.

Changing Places/House_n project

Also within the Changing Places/House_n project, multiple random test subjects have been used in an
experiment [TIL04]. A large number of state-change sensors, i.e. simple switches, were used in multiple
homes to detect activity of its inhabitants. While e.g. the group at the ETH Wearable Lab is using body-
worn sensors, they are integrating simple sensors into the environment, tackling another area of activity
recognition. Most of the requirements stated for activity recognition algorithms, namely “supervised
learning”, “probabilistic classification”, “model-based vs. instance-based learning”, “sensor location
and type independent”, “real-time performance” and “online learning” are very similar to our require-
ments on context classification algorithms (cf. Section 4.6.2), first formulated in [MRF03b]. However,
we explicitly aim for unsupervised learning and thus have a rather different set of algorithms to se-
lect from. In their description of the experimental setup, the authors describe the "experience sampling
method", which required test subjects to enter their current activity every 15 minutes. This definitely
gives rise to our intention of creating unobtrusive systems; the described experiment already exhibited
effects of the monitoring bias in the form that test subjects often did not answer the system’s questions
and thus made supervised learning only possible with intervention by researchers.

University of Helsinki (FI)

Currently, the work that has the most similar goals to this thesis has been presented in [LRT04]. The
authors aim to recognize and predict location information in an unsupervised, unobtrusive and online
way. They are currently using GSM cell data as location information and apply a custom clustering
algorithm to generate higher-level location information. This work is similar to our research in that the
system is built to automatically recognize context which is somehow important to the user, and, by
learning user behavior, predict future context on that level. They are also working without infrastructure
support and focus on devices with limited resources, primarily mobile phones. As to create higher-level
location information, a density-based clustering similar to the DBSCAN clustering algorithm known
from data mining (which is explained in Section 4.6.3) is performed. The authors describe similar issues
with recognition and prediction in embedded system like the ones we are facing in our current research,
e.g. that only rough estimates of the achieved clustering accuracy are available because no “correct” re-
sult can be specified. It is also worth mentioning that some similar ideas for improving prediction have
been stated independently, e.g. to take time of day into account instead of only using sequential pattern
prediction (cf. Section 4.8.2 for a discussion of the different options for prediction). Their experimen-
tal results are currently also indicating that prediction on this level of detail can indeed be performed
with limited resources in an online way, but suggest further research to improve the accuracy. In their
concluding remarks, the authors also state accuracy issues with their used sensing technology (GSM),
which we also expect to be a reason for limited prediction accuracy in our research. At the moment,
the most notable difference between our research and the one presented in [LRT04] is that we are not
focusing on location but including arbitrary sensing technology, whatever is available on a given device.
In personal communication, it turned out that the group from the University of Helsinki is also working
on including other information than location into their context sensing software.
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University of Washington (US)

In [PLFK03], high-level user behavior is inferred from low-level sensor data by adding knowledge of
real-world constraints to user location data. A variant of Dynamic Bayes Networks (DBN) is used in
an unsupervised way to predict transport routes based on GPS data. By adding constraints on the routes
that could be learned by the training algorithm, the prediction accuracy was significantly improved.
However, as we aim to perform prediction at the middleware, independent of the application area, we
do not see a general way of incorporating real-world knowledge (that is not learned automatically from
the sensor data) a priori into our framework. In the “Activity Compass” application, this was possible
because the work was restricted to location prediction with map material being available. Although it
might improve context prediction accuracy, this approach does currently not seem applicable to our
work on general, application-independent context.

University of Queensland (AU)

A complex, formal model of context with explicitly taking dynamic context (i.e. context attributes
changing over time), probabilistic effects and multiple granularities into account has been devel-
oped in [HIR01]. It is based on a graph structure of context attributes resembling the well-known
entity-relationship model from database design. According to the authors, neither the standard entity-
relationship model nor the UML modelling technique are suited well to create models of context, giving
reason to the development of their own context model. Recently, they have developed a prototypical
framework for handling context information based on their context model, mapping it to a relational
database [HI04]. They propose the use of two programming models namedbranchingandtriggering,
the former known from context-aware retrieval and the latter denoting the standard use of triggers in
computer science, e.g. in database systems. Both models have been integrated in a custom, multi-layered
Java programming toolkit, which is currently only partially implemented as proof-of-concept.

Owl

The Owl context service supports heterogeneous context sources, privacy and meta information like age,
i.e. the time since the sensor was last sampled, and confidence of context data [EHL01]. It is one of the
earlier works that already mentions the possibility of inferring future user behavior from learned habits.
To this end, their context service was designed to manage context history in addition to the current
context. It is also one of the few projects that explicitly deal with the issue of privacy by implementing
access control measures. However, it was still developed as a centralized service with a database system
as back end and thus requires a persistent connection between clients and infrastructure components and
faces issues of fault-tolerance.

Solar

Solar is a Java middleware system for context awareness [CK02] that is based on the notions of sources,
events, operators and applications: sources emit certain events, which are processed by a number of
operators before being sent to the applications. Although this middleware has an event-based structure,
semi-continuous context can also be realized by forcing sources to emit regular events with their current
value. The operators in this model can be compared to reusable methods in code libraries and thus
constitute an interesting concept in dealing with context information. Additionally, they provide better
scalability due to the distribution of computation over distributed devices and reduce necessary network
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bandwidth by reusing event streams. However, the system relies on a single, central component called
“star”, which is responsible for handling application subscriptions to certain events, making the system
also dependent on infrastructure components.

ORESTEIA

The ORESTEIA project (http://www.image.ntua.gr/oresteia/) is concerned with hybrid intel-
ligent artifacts and aims to create such artifacts that embed local decision capability, online adapt-
ability and communication with other artifacts. Recent publications concentrate on various topics like
vibration-driven power generation, inferring underlying functions from data [ABM+03] and on context
awareness in software agents [BTK+03]. However, it depends on a priori training of artifacts by a ven-
dor in a special training phase and explicit retraining phases for adaptation [Ore02]; we seek to avoid
the distinction of operation and training phases so that a device can be fully operational at all times.

SOCAM

At the National University of Singapore, a “Service-Oriented Context-Aware Middleware” (SOCAM)
has very recently been developed [GPZ04b]. It is based on an ontology-oriented approach, i.e. on a vo-
cabulary for representing context, and its model of context is defined using the Web Ontology Language
(OWL), allowing to share context between different entities and giving rise to reasoning about context.
Their middleware provides the standard services of acquiring, interpreting and disseminating context,
but also takes steps towards deriving high-level context from low-level context, which they call “con-
text reasoning” and which can be performed in description logic and first-order logic [HGZP04]. To
cope with limited resources in mobile devices, the authors divide possible situations into sub-domains
(e.g. home domain, office domain) and switch between the ontologies defined for these sub-domains.
However, this middleware is also a service- and infrastructure-oriented approach with a service registry,
which might make its use in infrastructure-independent embedded systems difficult. Adapting appli-
cations to changed context is performed via the standard way of predefined rules and triggers. The
described implementation of the context interpreter, which performs the reasoning process within the
OWL model, is suitable for infrastructure-based context services, but not for resource-limited devices.
In recent work, the authors proposed a probabilistic extension to OWL and added a Bayesian Network
approach to deal with uncertainty in sensor data [GPZ04a]. Although the ontology-based approach and
its automatic transformation to a Bayesian Network to deal with uncertainty could offer distinct ad-
vantages, currently there does not seem to be a method for automatically deriving this structure of the
ontology from sensor data. The designer of a system respectively its application needs to manually de-
fine this structure. Therefore, we can currently not employ such an approach when we aim for a general,
application-independent and unobtrusive context recognition.

CAMPUS

Another context middleware called CAMPUS has been developed at the Kyushu University in
Japan [HNKF03] and consists of two layers, the “real-time context deriving layer” and the “transi-
tive context deriving layer”. In the first layer, context is computed from the given sources (sensors or
databases) by applying only functions without an internal state. To deal with uncertainty of sensor data
like accuracy or freshness, their model of context builds on fuzzy set theory. For each of the quality
criteria, a membership function is defined and then scaled by multiplying it with the data value obtained
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from the source. This method allows to fuse different sensors that represent the same aspect, e.g. two
temperature sensors in one room; the functions in the first layer are defined as algebraic sums over the
fuzzy sets. In the second layer, building on the results of the first, transitions between situations are
handled by mapping the contexts from the first layer to symbols of a formal language and matching
a current context trajectory with episodes defined by the applications. The authors plan to implement
these concepts in a middleware in future research.

VTT Finland (FI)

In [KKP+03], another approach oriented on mobile devices is presented, which applies sensors em-
bedded into the device instead of the environment and which aims to recognize contexts. By applying
a naive Bayes classifier to a set of domain-specific features, they achieved a high accuracy in context
recognition for their selected scenarios. The applied sensors were an accelerometer, light intensity, tem-
perature, humidity, skin conductivity and a microphone with a range of audio features. These highly
optimized features were used with two Bayes networks, one for the audio context and the second for the
other features, constructed with expert knowledge. They applied a supervised approach with an assistant
who labeled the data during the experiment and assigned the context classes which have been defined
in advance to the experiment, namely seven classes for audio and two indoor/outdoor classes. Due to
the use of very specialized features and hand-crafted Bayes network structures, the authors acknowledge
that generalization of this approach might be limited. We strictly try to avoid applying expert knowledge
for the learning algorithms. However, some of the described audio features derived from the microphone
data could prove useful for future research.

COORDINATE

The COORDINATE project [HKKJ02] builds upon previous experiences with the PRIORITIES project,
which aims to predict when users will return to their offices if they are currently away. COORDINATE
is a network context prediction server based on a central database that provides predictions about pres-
ence and availability. While PRIORITIES used Support Vector Machine classifiers for estimating the
urgency of messages and considers features extracted from those messages, COORDINATE applies
Bayesian network techniques for handling multiple sensors like audio, video, computer activity, calen-
der information and position information. The Bayesian network structure is learned from the recorded
data and is used to predict the likelihood of people attending meetings and to estimate the interrupt-
ibility of meetings. The authors used parts of the system time for classifying the current situation not
unlike the way we experimented with time features (cf. Section 4.5.6), but derived more domain-specific
extracts of the system time, namely weekdays, weekends, morning, lunchtime, afternoon, evening and
night. They discovered that these extracts describing the time of day are valuable for the prediction. This
project is a network-centric infrastructure approach and thus not suitable for embedded systems, but the
use of Bayesian networks with automatically learned structure is interesting for prediction in general.

3.2 Pioneering Projects

In this section, the most important pioneering or initiating projects that had an influence on the devel-
opment of context awareness (as defined in this thesis) are listed. They describe an important part of
the history of context computing and help to understand how research on context computing evolved.
These earlier projects were characterized by a strong influence of the respective application area, with
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specialized sensing technology and optimized algorithms — only the Cooltown project started to shift
the focus from applications to protocols. However, they laid ground for many of the recent projects
described in the last section, which could build upon the collected experiences.

Active Badge

The Active Badge system [WHFG92] is a wearable, personal badge equipped with a microprocessor,
an infrared sender and a button. Every 15 seconds, it sends a beacon containing its unique id to re-
ceivers distributed in the environment, allowing to gather location information at a central server. It
used infrared as primary communication medium, which can be embedded in small devices with limited
battery life. These badges have been used at ORL for pioneering applications in pervasive computing,
like a building-wide notification system, and have since then been deployed at the University of Kent,
Imperial College, London, Lancaster University, the University of Twente, Xerox PARC, DEC research
laboratories, Bellcore and MIT Media Lab. The largest system is still in use at Cambridge, with over
200 badges and 300 sensors in the environment (cf.http://www.uk.research.att.com/ab.html).
As one of the first building-wide location system that can be said to be unobtrusive (the badges are small
enough to be worn comfortably), the Active Badge system had a significant influence on the develop-
ment of subsequent location systems and already defined upper boundaries regarding the size and power
consumption of worn devices; future, massively deployed systems should definitely not be any larger
or have less battery life. With the early Active Badge installations, even issues like privacy in practical
applications or acceptance by test subjects could be tackled due to the large number of badges in use.

Smart Badge system

Inspired by and building upon the experiences with the Active Badge System, the Smart Badge system
has been developed [BHMJ97]. Similar to the Active Badge, a Smart Badge has an infrared transceiver
and can be worn, but it additionally integrates tilt and heading sensors. Because infrared receivers are
also available in addition to infrared senders, the Smart Badge can sense its environment (the spatial
proximity of other Smart Badges) and transmit this sensor information bundled with its unique id to the
infrastructure, where it is gathered at a network server. This usage of spatial proximity was one of the
first in the pervasive computing research field.

Xerox ParcTab

At the Xerox Palo Alto Research Center (PARC), the ParcTab system has been developed, which is a
palm-sized PDA with touch screen, complemented by an infrared communication infrastructure with
room-sized cells. Most of its applications are executed on remote hosts and thus depend on the com-
munication infrastructure, which also handles location tracking. One of the applications that have been
implemented on the ParcTab is a remote control system to control lights and temperature for the current
location, others include the better known Forget-me-not system [LF94]. The ParcTab can be seen as a
more complicated version of the Active Badge that includes a limited user interface for arbitrary appli-
cations. As for the Active Badge, infrastructure support is necessary, but this project still inspired many
subsequent publications focusing on context aware handheld devices.
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Cooltown

The Cooltown project in Palo Alto [KMS+00] is still one of the most prominent pervasive computing in-
stallations. Its main goal is to provide a “web presence” for people, places and things. To this end, things
(i.e. devices) are equipped with web servers and URLs are used as the primary way of addressing in-
formation throughout the systems. By periodically sending URLs in infrared beacons and sensing those
URLs, location awareness is provided to users in the form of location-aware web services. Their use of
HTTP as communication protocol and WLAN for physical communication links allows arbitrary clients
to access the infrastructure and thus make use of the web presence of other people, places and things.
Example applications that have been implemented include the Cooltown museum and bookstore, which
allow to retrieve information about real-world items that broadcast URLs, or the Cooltown conference
room, which gives access to projectors, printers or whiteboards via URLs. This project has affected re-
search on context awareness in two areas: Firstly, its distinction of physical entities into people, places
and things has become one of the most often cited classifications of context aspects, although newer
definitions are less location-specific. Secondly, the usage of HTTP and URLs as principles for referenc-
ing and sensing shifts the focus in research from applications to protocols. Using standard, well-known
and established Internet protocols and only enhancing them by dynamic sensing technology might be
an important direction for future context-aware systems.

Neural Network House

Learning user’s habits has previously been explored by Michael C. Mozer in The Neural Network
House [Moz98], which is able to predict occupancy of rooms, hot water usage and likelihood that a
zone is entered in the next few seconds using trained feed-forward neural networks. The context in-
formation in the project was again mainly comprised of location, but additional state information from
rooms like the status of lights or the temperature set by inhabitants were used. While this project is
one of many “smart house” projects, it was one of the first to include prediction of user actions. Al-
though this was done via feed-forward multi-layer perceptrons, trained with standard back-propagation
(cf. e.g. [Zel94]) with the known limitations, it showed that prediction of user locations can help to save
resources and support users by learning their behavior and automating simple tasks.

3.3 Summary

The last sections gave a survey of pioneering and more recent projects in context computing and their
relation to this thesis. Judging from the recent developments of context computing research projects,
future context computing middleware will most probably need to standardize in two areas: one standard
protocol for communication between involved components (HTTP-based transfer might be appropri-
ate) and a standard representation for modelling context in a structured way (to allow sharing between
devices and interpreting context by applications). However, we are not contributing to any standard
protocol or model, as we are currently concentrating on embedded systems that perform all necessary
computations locally. As can be seen from Table 3.1, TEA and the research at the University of Helsinki
are most closely related to the focus of this work, which is on context prediction on embedded systems.
Both cope with limited resources and aim at applying adaptive algorithms which do not necessitate a
dedicated training phase for learning user habits, but stay flexible during the whole usage period of the
device. We can build upon the results from TEA, which is an architecture for online context aware-
ness, and extend it by context prediction and creating an open, extensible framework for context-aware



3.3. SUMMARY 31

T
E

A

C
on

te
xt

To
ol

ki
t

N
eu

ra
lN

et
w

or
k

H
ou

se

C
IS

Lo
ca

tio
n

S
ta

ck

S
ol

ar

M
av

H
om

e

S
O

C
A

M

A
ct

iv
ity

C
om

pa
ss

U
ni

v.
H

el
si

nk
i

U
ni

v.
Q

ue
en

sl
an

d

W
ea

rN
E

T

C
O

O
R

D
IN

AT
E

P
re

se
nt

th
es

is

Type D I I I I I I D D D I D I D
Software/Framework

cross-platform X 1) X X X X
open/extensible X X X X X X X X X X X
intermediate layer X X X X X X X X X X X X

Publicly available X X
Limited resources X X X X X
Context recognition

adaptivity X X X X X
unobtrusiveness X X X
multiple simple sensors X X X X X X X X X X X
deals with uncertainty X X X X X 2)

deals with missing values X X X X
Prediction

general context X
sequence X X X X X X 2)

periodic pattern X X 2)

1) only for clients using the context information
2) supported by core framework, but depends on the algorithm modules

Table 3.1: Properties of related work

applications. Other research like the projects at the ETH Wearable Lab, the MIT Media Lab or the Uni-
versity of Helsinki show the applicability of various sensing technologies and thus ease an selection of
appropriate sensors. Projects like the Neural Network House, MavHome, Activity Compass or again
the work from the University of Helsinki showed the application of a range of prediction algorithms to
specific problems or application areas and are also a basis for our research on general, abstract context
prediction. Especially the PRIORITIES and COORDINATE projects delivered interesting discussions
about using Bayesian networks for prediction, which should be considered when selecting prediction
methods.
In Table 3.1, the properties and features of a selected set of projects, namely those that constitute con-
text computing middleware or deal with prediction, are summarized. The type describes if the project
is device (D) or infrastructure (I ) based; this distinction between direct and indirect context has been
introduced in [GSB02] and also suits our overview. We declare a software framework to be open and
extensible if it supports to easily create new applications on top of it, i.e. if it has been built with support
for arbitrary applications in mind, and examine if an intermediate layer acts as an abstraction between
sensors and applications, i.e. applications do not need to deal directly with device-specific sensing tech-
nologies. Furthermore, we review if the developed software is publicly available by being offered for
free download and if it explicitly deals with limited resources of embedded systems. As for the context
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recognition aspects, we found five properties to be distinguishing among projects: Adaptivity describes
that not only a single training phase or expert-driven definition of rules, but constant learning during
the lifespan of the system is being applied and the system thus adapts to changed user behavior. Un-
obtrusiveness stresses that the amount of human supervision should be kept to a minimum by using
unsupervised learning techniques. It is further interesting if a system uses a combination of multiple
sensors and is able to deal with uncertainty in sensor samples and missing sensor values. For the predic-
tion aspect, currently only this thesis seems to consider predicting general, abstract context identifiers at
a high level, but the techniques of sequence prediction and periodic pattern prediction are also used in
other projects, albeit at a lower level.
As can be seen from the summarizing table, most of the considered projects are extensible and utilize
an intermediate layer, which should therefore be considered as an established approach. Only the Con-
text Toolkit is both cross-platform and publicly available, which are most probably the reasons for its
popularity. However, it does not explicitly deal with uncertainty or missing values or support adaptivity
within the framework itself. This gives rise to either an extension of the Context Toolkit in these areas or
the development of another framework designed to tackle them. Because the focus of the present thesis
is on context prediction, a new framework designed specifically with this aim is developed. Table 3.1
shows that a few projects in the area of context computing already utilized prediction methods and
should therefore be investigated more closely for research on general context prediction. Especially the
MavHome and COORDINATE projects and the work at the University of Helsinki lay a solid ground
for further considerations on the use of prediction methods in context computing.
The distinguishing aspects of the work presented in this thesis are context prediction and the combina-
tion of an open, cross-platform framework with the concentration on limited resources and unobtrusive-
ness.
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Chapter 4

Context Prediction

Context Predictionis an important aspect of Context Computing that aims at inferring future contexts
from past (observed) contexts. In [Fer03a, Fer03b], a general architecture for context-aware applications
has been defined. As already shown earlier in Fig. 2.1, sensors and actuators are the interfaces between
the physical and the virtual world. In a more detailed view, context computing is situated at the input of
pervasive computing applications and processes sensor data to derive high-level information about the
current situation, which is then used by applications to act on the environment (cf. Fig. 2.3). As can be
seen in Fig. 4.1, context-aware applications will usually need to be designed in a component oriented
style. Starting from low-level sensor data, various transformations are applied to infer high-level context
information; this step is usually termed context recognition from the application point of view. On top
of this context information, statistical and machine learning algorithms can be used to monitor and
extrapolate the context history with the aim of learning and applying this knowledge to predicting future
contexts. Finally, applications may use past, current and predicted future contexts to control actuators,
typically in terms of rules that are dependent on the high-level context information.
Here we are mainly concerned with the context prediction component and, as a prerequisite, also context
transformation parts. In this chapter, we introduce the detailed architecture for context recognition and
prediction that has been developed within the scope of this thesis. It aims to infer high-level context
information from a multitude of heterogeneous sensors. Context rules then describe the influence of
those current and future contexts on the actuators, and consequently the behavior of the whole system.
The execution of such rules or other means to act on the environment by controlling actuators is outside
the scope of this thesis and left to applications built on top of the presented architecture.

4.1 General Concept

A common approach is to regard a system as a black box and define its input/output behaviour. In
Fig. 4.2, the inputs and outputs of the functionf that denotes the context recognition and prediction
parts are shown: the system obtains low-level sensor data by sampling sensors at time intervals and
produces high-level context information as user-defined, descriptive labels for context classes. To be
able to identify quality criteria forf , we first need to define the input and output data in more detail.
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Sensor Sensor Sensor Sensor Sensor Sensor

Context transformation

High-level
context information

Context prediction

Context rules

ActuatorActuator ActuatorActuator ActuatorActuator ActuatorActuator ActuatorActuator ActuatorActuator

Figure 4.1: General architecture of context-aware applications, after [Fer03b]

f
Input

(low-level
sensor data)

Output

(high-level
context information)

Figure 4.2: Black-box overview of the context prediction architecture

4.1.1 Input Data

The possibly multiple input data streams are heterogeneous and complex, exhibiting the following char-
acteristics:

• They aretime series. A (single-dimensional) time series can be defined as a mapping from points
in time to data values:

x : T0 → X

whereT0 denotes the set of sample times andX is the set of possible sample values. In [BD02],
the distinction betweendiscreteandcontinuous time seriesis explained:

A time series is a set of observations xt , each one being recorded at a specific time t. A

discrete-time time series[...] is one in which the set T0 of times at which observations

are made is a discrete set, as is the case, for example, when observations are made at

fixed time intervals.Continuous-time time seriesare obtained when observations are

recorded continuously over some time interval, e.g. when T0 = [0,1].

For context prediction, we are primarily concerned with discrete time series, because current
sensing technology usually demands sampling at discrete time steps to produce values suitable for
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Figure 4.3: Conversion between time series and event streams

automatic processing in computer systems. When dealing with sensors, sampling in analog-digital
converters will always produce discrete time series. By applying appropriate transformations, the
set of sample times can be mapped to integers, i.e.T0 ⊂ Z.

• The input ismulti-dimensionalwith a possibly large number of input dimensions. Each physical
sensor can yield one to many time series, which are combined to an input vector ¯xt for each sample
time t.

• Sample values from different sensors can be heterogeneous and of different types. As we mainly
work on feature values instead of sensor values in the context recognition part, this heterogeneity
is dealt with after a first pre-processing step. It is discussed in more detail below in Section 4.5.1.

An additional type of input data that could be exploited for context prediction areevents. An event is
an occurrence of some external incident and is defined by its time of occurrence and its value. The
main difference between samples and events is that sampling is typically controlled by some process
integrated in or associated with the system, yielding sample values at known times, while events are
generated externally and can not be controlled by the system. An interesting concept would be to analyze
the delays between event times and use this information instead of sample values for inferring higher-
level information. This would constitute a different type of coding input data in a way similar to Spiking
Neural Networks (SNNs) [May02], but is currently not considered as a viable alternative, given the
current sensing technology. However, a discrete time series can be converted to an event stream by
looking for (known) events in terms of patterns and transmitting the time series data surrounding the
pattern within the generated event [RC99]. Examples for very simple patterns would be (local) minima
and maxima, as depicted in Fig. 4.3. In the opposite way, an event stream can be converted to a discrete
time series by maintaining a state variable that is updated with each incoming event and returns the last
known value at each discrete sample time.

4.1.2 Output Data

The output of the system should characterize:

• The current context, optionally represented by a user-defined label (string).

• Predicted future contexts, possibly for different time horizons.
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Some applications might need a list of possible current and future contexts with a likelihood measure
instead of only a single, “best matching” context. The architecture should be flexible enough to support
both output modes, but a list of rated contexts can not be defined as mandatory output; a number of
prediction methods that could be used for context prediction are only capable of computing a single
context that is deemed to be the most likely one at the respective, future point in time.

4.1.3 Approach

In our chosen approach, which has first been presented in [MRF03b], common patterns in the sensor
readings are detected by classification methods. These patterns can then be interpreted as “states” of a
state machine that act as context identifiers. A user context is therefore abstracted to these states, whose
internal data structures relate sensor readings to abstract identifiers. A related approach has been taken
in [HP98], where “affective states” of a user were recognized from a number of sensors. Although this
state-based interpretation makes it more complicated for applications to query for specific aspects of a
context (e.g. location) instead of the context identifier, it allows to monitor and record the state trajectory
of this state machine. When a user advances from one context to another, sensor readings will change and
another state will become active, reflecting the context change. Thus, interpreting the context changes as
a state trajectory allows to forecast the future development of the trajectory, and consequently to predict
the anticipated contexts. To be more concise, within the scope of this thesis forecasting is understood
as the computation of the probability distribution for all possible contexts for a future point in time.
With discrete, single-step forecasting, this accounts to estimating the probability with which each of the
possible contexts will become active in the next time step. For clarity, only the term context will be used
in the remainder of this thesis, which is similar to a state in our interpretation.
For the whole system, represented by the functionf , we can define some quality criteria for evaluating
implementations:

• As context awareness needs to be embedded into a wide range of devices, including small and
mobile ones, the system has to cope with limited resources, namely processing power and mem-
ory.

• To keep the system unobtrusive, explicit user interaction must be kept to a minimum.

• Context recognition and prediction must be performed online close to real-time.

• The system must cope with varying dimensionality of input data.

• Because real-world sensor data will be used, missing values must be dealt with.

• A reasonable trade-off between computational complexity and accuracy should be found with
respect to the application requirements.

By following these criteria, we can subsequently select an architecture and a set of methods to design
and implement the system.

4.2 Architecture

Following current best practice in designing an architecture, we use a multi-layer architecture with
simple interfaces between the layers. Such architectures have been used successfully in different areas,
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most notably in networking with the ISO/OSI network layer model, and are also applied in context
computing as discussed above. Our approach to context prediction, shown in Fig. 4.4, is based on five
steps, separated by simple interfaces: sensor data acquisition, feature extraction, classification, labeling
and prediction. In these five steps, recognized current and predicted future high-level context information
is inferred from low-level sensor data. Due to the exact definition of the interfaces between the steps,
they are mostly self-contained and can be exchanged independently. All of the feature extractors, the
classification algorithm and the prediction algorithms have been realized as dynamically loadable shared
libraries which can be selected during run-time as proof of concept of the flexibility.
A key issue for the quality of recognized and predicted context is the significance of acquired sensor
data; a broad view on the current context, which is usually desired for most applications, requires a
multitude of sensors with ideally orthogonal views of the environment. To achieve such a broad view,
it seems reasonable to use multiple simple sensors, each capturing a different aspect of the overall con-
text. However, many of the sensors which are currently available to information appliances in personal
or mobile computing do not produce numerical output and it is not easily possible to extract numeri-
cal features without altering the meaning. Examples for such sensors are Bluetooth or wireless LAN
adapters, which can capture parts of the network aspect, the GSM cell id, which defines a qualitative lo-
cation aspect, or the name of the currently active application (or application part), which captures a part
of the activity aspect of a user or device context. A method to cope with this heterogeneity of features
has been developed for the general case, independent of the used classification algorithm.
As already mentioned, the general idea for recognizing and predicting context within our architecture
is to detect common patterns in the user’s or device’s situation and abstract those patterns to context
identifiers. Thus, unsupervised classification methods are an ideal instrument for our architecture. In the
scope of this thesis, the term clustering is used as a special form of classification, namely unsupervised
classification. When the current context has been recognized in terms of an abstract context identifier,
in our architecture by means of clustering, it can be interpreted as the state of a state machine. The
trajectory of this state can then be monitored and used for learning the user behavior and consequently
be predicted, yielding future context identifiers for use at the application level. One major advantage
of this approach is that predicted future context identifiers can be handled like current ones, and thus
context-aware applications can automatically become “future-aware”.
The main characteristics of this architecture and the following overview of the different steps have also
been presented, in an earlier version, in [May04]. In its current state, it has been optimized towards
mobile and embedded systems, typically with restricted GUI capabilities, because this is the more chal-
lenging area. The different processing steps can be regarded as filters, transforming input values to
output values. No central context repository is necessary, every step is independent and performs online
data processing. Thus, the architecture is well suited for resource limited information appliances, but
does not exclude the integration of complex modules with high demands on computational resources.
When available, powerful processing or storage components can be utilized. Although modules from
different steps, e.g. a classifier and a predictor, might use extensive data storage facilities like a central
database server, they can do so independently. The interfaces between the distinctive steps are vectors
attributed with time stamps; time is passed implicitly from one step to the next. For debugging, eval-
uation and monitoring purposes, the complete history of these vectors can be logged in a general way
and thus allows offline processing if necessary. During normal operation in a device, no central his-
tory is necessary as each module maintains its own, internal data model. Typically, this will not cause
any duplication of data because the modules in different steps will construct data models with different
meanings.
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Figure 4.4: Architecture for context prediction

There is an additional, very important issue of context computing that influenced the design of — and is
addressed by — this online, filter-type architecture: privacy. Although this thesis is not primarily about
privacy, associated concerns need to be addressed starting with the first design considerations of any
context-aware system, or user acceptance will be a serious problem. This has already been pointed out
early in [BBL+00] from an application point of view:

Privacy issues underlie most context-aware applications: the more the application knows,

the better in can perform, but the more it knows, the more invasive it is of privacy. Privacy

concerns have killed many potential applications already, and will continue to do so.

In a more recent survey, this has been further elaborated [MR03]:

In an environment full of sensors that are keeping track of everybody and everything that is

happening, privacy becomes an important issue which can not be added at the end of the

development process. Privacy must be taken into account from the beginning.

[...]

There are two main approaches towards ensuring privacy. The more common approach is

to try to make sure that as little information as possible gets outside the system, the second

interesting alternative is to restrict the amount of information being acquired and stored to

the absolute minimum right from the beginning.

Our approach is the latter one, to store only as much information permanently as absolutely necessary.
By allowing context recognition and prediction to be embedded directly into personal mobile devices,
a further step towards broad acceptance is taken by this architecture. The fact that users may feel more
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comfortable with “smart” personal devices than with a “smart” environment that captures contextual
information has also been suggested independently in [MR03]:

Another alternative would be to let the environment stay “dumb” and use smart mobile

devices or wearable computing equipment to gather and process contextual information,

and let these devices instruct the environment to perform certain tasks. It would also allow

people to feel to be more in control of what is happening. A person would be able to go

totally offline by simply switching off their mobile device or by not wearing their wearable

computer.

Although the architecture supports possibly arbitrary context-aware systems and certain modules can
record detailed contextual information of users, it is important to note that personal mobile systems that
run in online mode with only minimal permanent storage facilities are expected to achieve better user
acceptance.

Main advantages of this architecture with regard to the criteria defined in Section 4.1.3 are that it allows
an online operation without explicit training phases, that it is unobtrusive due to the use of unsupervised
methods and that it is able to cope with limited resources because no central context repository is re-
quired. Furthermore, the modularized architecture allows classification and prediction algorithms to be
exchanged easily, which simplifies the evaluation phase for specific applications.
To derive context from raw sensor data, the following steps are applied, which are depicted in Fig. 4.4:

1. Sensor data acquisition: Sensors, e.g. brightness, microphone or IEEE 802.15 Bluetooth and
IEEE 802.11b Wireless LAN (WLAN) network interfaces, provide data streams (time series) of
measurements. Usually some physical values like the incoming RF signals are the base for the
measurements, but more abstract sensors like the currently active application can also be utilized.
In [Sch02a, p. 78f], sensors are classified as physical or logical, which is not done in this architec-
ture, mainly because the general aim is to provide uniform access to arbitrary sensing technology.
Within this work, a sensor is defined asany entity that can provide measurements of the environ-

ment a device is situated in. Values are sampled at discrete, but not necessarily equidistant time
stepst ∈N0, whose frequency should be set to the maximum desired sample frequency of all used
sensors. As this is highly application specific, no universally valid distance between sample time
steps can be determined.
A sensor vector S1×S2× ...×Sl defines sensor readings〈s1,s2, ...,sl 〉t ∈ S1×S2× ...×Sl for
points in timet.

2. Feature extraction: From raw sensor data, information can be extracted by domain-specific meth-
ods, yielding multiple data values per sensor which are calledfeatures Fwith samplesf ∈ F as
a function of time. During feature extraction, the available data is deliberately simplified, trans-
formed or even expanded, allowing for a better interpretation. Usually, simple statistical parame-
ters like the mean ¯x, standard deviationσ or higher moments are used as features for time series
of numerical data. For nominal and ordinal data, alternative methods must be explored.
The set of features is called afeature vector F1 × F2 × ... × Fn, which defines samples
〈 f1, f2, ..., fn〉t ∈ F1×F2× ...×Fn for points in timet in the multi-dimensionalfeature space. The
number of featuresn, i.e. the dimensionality of the feature space, is defined by the accumulated
set of features that can be extracted from the available sensors.
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3. Classification: The task of classification is to find common patterns in the feature space, which
are calledclasses. Because a feature vector should possibly be assigned to multiple classes with
certaindegrees of membership(the “probability” that the feature vector belongs to a class), soft
classification/soft clustering approaches are utilized. These approaches map a feature vector of
n different features to degrees of membershipc∈C with C := [0;1] of m different classes:F1×
F2× ...×Fn →Cm. The classesci for i = 1. . .mare regarded as the detected user context and are
identified by a simple index in the class vector.
Theclass vector Cm defines class degrees of membership〈c1,c2, ...,cm〉t ∈Cm for points in timet.
The number of classesmshould be determined by the applied classification method, based on the
given feature space, and is usually not fixed. During run-time,m can increase when new classes
are found.

4. Labeling: To ease the development of context-aware applications and for presenting detected con-
texts to the user, descriptive names should be assigned to single classes or combinations of classes
(cf. [LL01]). Labeling maps class vectors to a set of names:Cm → N whereN is a set of user-
defined context labels (strings).
A context label nt ∈ N describes the currently active context at timet.

5. Prediction: To enable proactivity, our approach is to forecast future contexts. Thus, the prediction
step generates anticipated future class vectors from current ones:Cm×R+×R+ →Cm.
A (future) class vector defines degrees of membership for each class:〈c1,c2, ...,cm〉s =
p(〈c1,c2, ...,cm〉t , t,s) for points in timet ands with s> t.

It should be noted that, with the above definition of the interfaces, aflat context model is assumed.
Flat, in this case, means that there are no defined relationships between context classes; all contexts
are situated at the same level of abstraction. This assumption stems from the chosen approach of ex-
amining context syntactically, disregarding domain specific knowledge about the interrelationships of
related or nested contexts. By exploiting such knowledge, context can be analyzed semantically on dif-
ferent levels of granularity, e.g. the finer contexts “writing”, “reading”, “meeting” and “giving a lecture”
could be nested inside the less detailed “at work”. Undoubtedly, adding such domain specific knowl-
edge to a context-aware system can improve the results by, on the one hand, helping to resolve possible
ambiguities and, on the other hand, allowing applications to work with contexts on different levels
of granularity. However, this knowledge, represented by relationships between context classes, has to
be introduced into the system by experts for each application domain and is consequently in conflict
with our central aim of unobtrusiveness. By changing the definition of class vectors, i.e. the interface
between the classification and the labeling and prediction steps, it would be possible to support ahier-

archical model of context, wherecontext aggregatescan be built fromcontext atomsby composition
(cf. [Fer03a]). This more flexible context model would allow a more powerful definition of relationships
between contexts. Unfortunately, it is yet unknown if a hierarchy of contexts can be constructed auto-
matically in an unsupervised manner solely from the gathered sensor data, as it is possible with a flat
context model. Although hierarchical clustering methods allow the construction of a hierarchical model
of the input data, they are typically used in a highly interactive way for manual inspection of data. To
allow a broader range of classification methods to be used within this architecture and for simplicity
of the defined interfaces, the following considerations generally assume a flat context model with the
above definition of class vectors. In the present work, we restrict ourselves to a syntactical analysis of
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context instead of a semantical one, accepting the limitations of this approach in favor of unsupervised
and unobtrusive operation.
In the following Sections 4.4 to 4.8, the five blocks are described in more detail.

4.3 Focus

This thesis concentrates on a general approach to context prediction that is suitable for a wide range
of applications. Domain-specific heuristics might achieve higher accuracy for special applications, but
are specific to the application area they have been developed for and can usually not be applied easily
to other areas. Thus, the concept and architecture are probably better suited for applications utilizing
many different sensors than for applications with a single sensor and well-known, highly optimized,
domain-specific methods.

4.4 Sensor Data Acquisition

As context computing is directly coupled with the available sensors, a short survey of state-of-the-art
sensor technology is given to motivate the selection of appropriate ones. It has already been recognized
in a number of research projects (e.g. [BGS01, GSB02, TIL04, SDA99, LJS+02, LRT04]) that context
awareness based on multiple simple, energy-saving and cheap sensors can be more reasonably embed-
ded into end-user consumer devices than when being based on powerful but large or expensive sensors.
Additionally, a multitude of different sensors can possibly provide a broader view of the environment
than a sensor of one category might be able to. With advances in sensor technology and systems integra-
tion, it might be possible to have even more complex sensors like CCD video cameras in unobtrusive,
body-worn objects like buttons (cf. [BOST04]). However, for context computing, the use of off-the-shelf
sensors, i.e. sensing devices which can be utilized by end users without special adaptations, should be
preferred due to broad and cheap availability, leading to a broader scope of applications.
For context awareness in information appliances, sensor fusion does, at the current state of research, not
seem appropriate, because the available sensors typically capture different, mostly orthogonal aspects
of the user or device context (cf. Section 2.1.3). Fusing of sensors would offer a more complete view
on the environment, but necessitates some level of redundancy and a common model, which is currently
not available for context descriptions. A possibility for exploiting multiple similar sensors, which can
obviously be fused, is to exchange raw sensor or feature vectors between devices in spatial proximity.
If two or more devices have similar sensors, their samples can be merged to obtain more robust results
due to redundancy. This has been proposed independently in [MHH03], similar to our recommenda-
tion in [MRF03b]. Sharing perceptions between nearby, possibly mobile devices demands spontaneous
ad-hoc peer-to-peer communication techniques to allow a flexible formation of communication links
whenever similar sensors are detected in range. We have proposed an ad-hoc peer-to-peer middleware
in [FHMO04a, FHMO04b], which has been optimized for highly dynamic interaction between mobile
devices and can be used to share sensor streams.

4.4.1 Sensing Technologies

A vast diversity of sensing technologies is currently available from different fields, but only a subset
can currently provide meaningful and exploitable measurements to context computing. In this short
survey, we restrict ourselves to sensor technology than could potentially be embedded into information
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appliances in some form. The following list was inspired by [Sch02a], but has been adapted to our focus
of research on embedded systems. It identifies families of sensors; we concentrate on which information
that is relevant to context computing can be gained. For details on specific implementations of the
respective sensor families, we refer to [Sch02a].

Light (brightness) Light intensity sensors for measuring the brightness of ambient light are small,
simple senors which are commonly available. They are currently used in many consumer devices to
control the intensity of the display back light, but could be used for additional purposes, presumed that
they are accessible to middleware components.

Vision Cameras, e.g. CCD, measure the same physical property as simple brightness sensors, but
combine many sensor cells to achieve a spatial resolution. They are becoming widely available in small
form factors and usable resolutions and thus get included in end-user devices like smart phones or PDAs.
As they constitute the upper range of sensors regarding their expressiveness and data rate, using cameras
for context computing demands significantly more processing power, but can yield a large number of
features about the environment: ambient light intensity, motion of the camera (i.e. the device or user),
motion of objects in front of the camera, dominant color, contrast, etc. Video cameras have already been
successfully applied to recognizing high-level context information [CP98].

Audio Microphones in various forms are also common in current devices, mostly targeted for the
frequency range of human speech in mobile phones or PDAs, but also capable of recording frequencies
outside that range. Audio processing is also demanding in embedded systems and sometimes assisted
by special-purpose digital signal processors (DSPs). It is also possible to extract many different features
from audio data to assist context recognition (e.g. [CSP98, KKP+03]).

Acceleration Accelerometers have a number of advantages for inferring activity, like moderate power
consumption and price, that allow them to be distributed over the body and thus allow to distin-
guish activity at different granularity levels. They have been used extensively in context computing
(e.g. [CCLG02, LWJ+04]).

Location For location sensing, there is an important distinction in the resolution, i.e. granularity, of
different approaches. While one class of systems is cell-based, yielding a coarse description of the loca-
tion e.g. on the granularity of rooms, buildings, or city blocks, the others provide location data in some
coordinate system. Most location systems are infrastructure based, including the global GPS/Galileo
(coordinates), land-based GSM (usually cell-based data) or high-resolution near-range systems based
on infrared, ultrasonic or radio sensing (coordinates). Current, standard networking technology like
WLAN or Bluetooth can also be used to provide cell-based and, with restrictions in accuracy, coor-
dinate information. Another important technology is Radio Frequency Identification (RFID), which is
primarily an identification technology that is currently being massively deployed in a wide range of
applications. RFID can be used either for cell-based location sensing when locations of reference units
are known or, with recent enhancements, for computing coordinates of tracked units via triangulation.

Orientation Gyroscopes, magnetic field sensors or tilt sensors can be used to infer 3D orientation
information. However, for directly inferring high-level context information, orientation information is
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too fine-grained. It is nonetheless possible to combine it with other sensors for extracting features from
a sensor group.

Proximity Proximity can be seen as a special form of location, namely location relative to the current
device or user, but there are some distinct properties in proximity sensing. Classical proximity sensing
technologies are based on radar, microwave or ultrasonic but are less common in current off-the-shelf
devices due to size and power constraints. Although some of the location sensing technologies are also
suitable for direct proximity sensing, or are basically proximity sensing technologies, like Bluetooth,
WLAN or RFID, there are additional methods for sensing proximity with simpler means. Touch sensors
or body contact (cf. [Zim96]) sensors can be used to detect direct contact, i.e. zero distance or maximum
proximity. Particularly touch sensors can be realized with a minimum of technical effort and can thus
be implemented in arbitrary mobile devices to detect if they are held or worn.

Environmental conditions Temperature, humidity and air pressure sensors are also rather simple,
electro-mechanical sensors with low power consumption. Humidity sensors are less common in end-
user consumer devices, but temperature and air pressure sensors are available in more sophisticated
watches or mobile GPS receivers and can indicate a variety of situations: e.g. temperature can indicate
if a device is in-doors or out-doors, if it is worn near the body etc. while air pressure indicates the
altitude.

Force Force sensors measure a mechanical force and are available in vastly different forms, ranging
from strain gauges to load cells. Typically, they are realized as piezoresistors whose resistance increases
with mechanical strain. There are also field effect transistors that exploit the piezoresistive effect and
which can be integrated with CMOS technology. Although there have been some experiments with load
cells (e.g. [SLS+02]), they are generally less common in off-the-shelf devices.

Bio-sensors From medical care, a number of bio-sensors are available that could be used to detect
emotional aspects of context (cf. Section 2.1.3). Practical considerations require that such sensors must
be very easy to apply and that they can be worn comfortably, like skin conductance and heart rate sensing
integrated into a watch. This usually precludes elaborate cabling from the physical sensors to a process-
ing unit and gives rise to Personal Area Networks (PANs), e.g. realized by Bluetooth connectivity.

Identity A way to determine the identity of a user is important not only for authentication purposes in
terms of computer security, but also for general context-aware systems. Without a notion of the identity,
properties of a user profile like interests or past behavior could not be used for adapting the system. An
impressive range of sensing technology has been developed primarily for identity recognition, including
iris scanning, fingerprint sensors, speaker recognition, face recognition, DNA analysis and other so-
called “biometric” systems. For closed environments where there is less chance of identity theft and
which have weaker requirements on security, other means of recognizing user identity can be used,
most probably in a less obtrusive way. Examples are RFID tags, visual markers, bar codes, infrared
badges or even personal Bluetooth-enabled devices identified by their unique MAC address.

State change The simplest possible form of physical sensors are switches, with the main advantage
of requiring no power to be operated. Switches can be built in diverse mechanical forms, such as contact



44 CHAPTER 4. CONTEXT PREDICTION

or ball switches, tilt sensors or standard buttons, but can also be integrated into connectors to indicate
when a connector (like power) is plugged into the device.

In addition to these families of physical sensors, the internal state of a device can also provide important
information about the current context, e.g. the currently active application is a strong indicator for the
current user activity.

4.4.2 Requirements

There are a few issues that need to be considered when embedding sensors into devices for the purpose
of context computing. First of all, there is a trade-off between power consumption and data rate respec-
tively accuracy of a sensor. Simple sensors with no or low power consumption typically exhibit limited
accuracy or data rate. Examples are the simple light intensity sensors in contrast to CCD video cameras
or touch sensors in contrast to RFID-based proximity sensing. Another practical issue is the size of a
physical sensor. Some application areas have upper bounds on the size of devices, like the area of mobile
communication which defines clear limits for the maximum weight and size of mobile phones that are
acceptable to customers.
As already indicated by these issues, the requirements on sensing technology are highly specific to appli-
cation areas and it is difficult to define general ones. Instead, the context sensing layer should be flexible
enough to deal with arbitrary sensors and not impose any additional restrictions. Nevertheless, care has
to be taken when using remote sensors that they are still within a close range to the place where con-
text awareness is aimed for. When remotely connected sensors or shared perceptions of remote devices
are utilized, it has to be ensured that their measurements still represent the context of the device which
performs the context recognition. In this regard, “close” does not necessarily correspond to immediate
spatial proximity but is defined by the application, e.g. the air pressure is usually almost identical within
a whole city block (at street level), so that remote sensors within that area can be used. For the internal
state of a system, the notion of “close” is even independent of the geographical location, e.g. a group of
people logged into a CSCW environment will share an approximately similar application and activity
context although they can be geographically dispersed.

4.5 Feature Extraction

Feature extraction is probably best known from image processing (e.g. [Bov00]), general pattern recog-
nition, robotics and speech recognition. The task of feature extraction is to reduce the complexity of raw
sensor data by computing a number of properties of the signal that describe it. By applying domain-
and sensor-specific methods, the raw sensor data is transformed into more meaningful values, which are
typically represented as real-numbered feature vectors. Usually, the representation of sensor data in the
associated feature space is more compact, saving computational resources in the subsequent classifica-
tion. There exist some common features that can be used to differentiate one- or two-dimensional signals
and are applicable to all types of such signals. Examples are simple statistical functions like minimum,
maximum, mean and median values or the standard deviation. Such simple features have been applied
successfully to context recognition with physical sensors that yield real-numbered values (e.g. [Lae01]).
However, more advanced features are specific to certain signal types and can only be extracted with
domain-specific knowledge. Examples of such highly domain-specific features are histogram difference
or scene change categories in video indexing [Bov00, section 9.1], ridge endings or ridge bifurcations in
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fingerprint classification [Bov00, section 10.5], anatomical features in face recognition [CGY96], mel-
scaled filter-bank coefficients in sound classification [CSP98] or WLAN access point MAC addresses
in range and GSM cell id for recognition of cell-based location context [MRF03a]. It is already well
documented that feature extraction can vastly improve the results [Bov00, page 411]:

The quality of feature selection/extraction limits the performance of the overall pattern

recognition system. [...] Thus feature extraction is the most crucial step.

Therefore, domain-specific knowledge about sensors can — and should — be exploited to select an
appropriate set of features to be used in this step and thus improve the overall results. Although this se-
lection is crucial for the whole context prediction process, it does not include any higher-level modelling
of interrelationships between contexts as discussed above in Section 4.2; it is limited to selecting and
applying a specific set of features suitable for the chosen application area and can thus be done more
easily for new application domains where context models are not yet known.

4.5.1 Types of Features

Compared with feature extraction from video or audio data streams, feature extraction in context com-
puting faces an additional complexity due to the simultaneous utilization of different families of sensing
technologies. As previously described in [MRF03a], some of these sensors do not yield single, numer-
ical values but data with a more complex structure. Some important information that can be extracted
from these sensors is categorical (nominal) and non-atomic, e.g. the list of Bluetooth or WLAN MAC
addresses which are currently in communication range. Nonetheless, it could provide useful information
for determining the current user context. The specific example of recognized Bluetooth MAC addresses,
which is described by a flat but a priori unbounded “list” feature, describes a significant part of the
networking and additionally a part of the location context. Non-numerical features can provide valuable
information for context recognition and prediction and should thus not be neglected. Due to this mix-
ture of different sensor types, the feature vector〈 f1, f2, ..., fn〉t formed by an arbitrary combination of
domain- and sensor-specific features is highly heterogeneous. We can distinguish the following types of
features by their possible sets of values:

• Nominal(categorical, qualitative): values of a setF on which no order relation has been defined.
Nominal features only need to define an equivalence relation, which is reflexive, symmetric and
transitive. A special case are binary features withF = {0,1}. This type of features poses only
minor requirements and is thus in practice applicable to arbitrary kinds of features.

• Ordinal (rank): values of a setF with a defined total order relation≤ in addition to the equivalence
relation. A binary relationRon a setF is a total order if and only if it is reflexive, antisymmetric,
transitive and for any pair of elementsa ∈ F and b ∈ F , 〈a,b〉 ∈ R or 〈b,a〉 ∈ R. Due to the
additional requirement of a defined order, this type of features allows to determine the median of
a set of values.

• Numerical(quantitative): values of an ordered setF with defined+ and· operations. Numerical
features are an algebraic field, which demands closure ofF under+ and·, associativity for+ and
·, commutativity for+ and ·, distributivity of · over +, existence of additive identity, existence
of multiplicative identity, existence of additive inverses and existence of multiplicative inverses.
Typical examples for such fields are integers, rational numbers or real numbers. We can further
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distinguish according to the density of values in the set betweendiscrete(F ⊆ Z) andcontinu-

ous(F ⊆ R) features. This type of features allows to compute statistical moments like the mean
(average) or variance of a set of values.

• Interval: intervals instead of single values, i.e.F = {〈a,b〉 | a,b∈ G} whereG is another set,
e.g.G = R. An equality relation can be defined trivially between intervals, as can be operations.
Intervals are well known ininterval arithmetic[Kea96] and can be used to determine bounds of
values. For intervals based onR, an order relation can also be defined. For real-world sensor data
with known accuracy bounds, intervals are well suited and can often be used as a direct but more
powerful replacement to numerical values.

The above feature types are allatomic(in the same sense as atomic attributes in the well-known first
normal form of relational database design, cf. e.g. [Wik]), which means that elements of the respective
sets can be expressed with a fixed number of variables (two for interval types). But some sensors yield
non-atomicvalues like the list of Bluetooth MAC addresses in communication range, which are nominal
values. Such list features are setsF ⊆ P (G) whereG denotes the basic set andP (G) the power set of
G, e.g. the set of all possible MAC addresses.
If non-numeric values should be used as input to a classification algorithm which can only work with
numerical inputs, they need to be coded. The standard procedure is to transform all non-numerical into
numerical input dimension by assigning one input dimension for each possible feature value, i.e. theone-

of-C method. E.g. for the WLAN ESSID or the currently active application (represented by strings), the
single, nominal dimension can be split into as many binary dimensions as there are different values of
the respective feature, where, at each time step, only one of those dimensions is set to 1 and all others
must be set to 0. This has been applied successfully to categorical data with a bounded set of values
(e.g. department, color, nationality), but is problematic when the set of possible values is not known in
advance or too large to be coded with binary inputs (e.g. WLAN MAC addresses would need 248 input
dimensions to cover all possible values). Therefore, coding categorical data as numerical inputs does
not seem to be the best solution and a better method should be found.
In our architecture, a feature type is defined by the feature extractor that is producing the respective
features. All feature extractors are independent of each other. They typically operate on different sets of
sensors, but it is also possible to use multiple different feature extractors on the same sensor time series.
As no standard interface for the variety of raw sensor data streams has been defined, such cases have to
be handled by the respective feature extractors in a sensor-specific way. However, because each feature
type is defined by its extractor, the necessary transformation of the internal type to the external interface
expected by the classification algorithm can also be implemented independently and in a domain-specific
way. In the following, the external interface to the classification step, which defines the requirements on
each feature, is explained in more detail.

4.5.2 Requirements

The transformation of arbitrary feature types to a common interface for classification algorithms is an
abstraction of the feature details and thus allows all heterogeneous features to be unified in a multi-
dimensional, homogeneous feature space that can be classified by commonly used, well-established
algorithms. One of the issues with such an abstraction is that the range of some sensors can not be
determined a priori, e.g. Bluetooth or WLAN interfaces, when used as a proximity sensor, yield one
binary value for each already known peer, with the number of known peers increasing over time. Such
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a non-atomic, growing list of values can not be mapped to a single numerical type while preserving
the semantic ordering. Common classification algorithms depend on a defined order of the given input
values to achieve a reasonable distinction into classes, but a mapping would discard the connections
between values of the internal feature type. Thus, simply mapping any type to a numerical type and then
executing the clustering on the mapped values would impair classification accuracy.
A comparison of different classification methods, ranging from clustering algorithms to neural networks,
showed that only two operations are necessary on a featureF : a distance metric and an adaptation oper-
ator (this matches the results of other research [NB01]). With these two operations, common supervised
and unsupervised classifiers can be easily applied to any feature which defines them.
In the following, we will define both operations in more detail, as already presented in [MRF03a].

4.5.3 Similarity Measure

The first operation that needs to be defined on each feature, i.e. on each dimension of the feature space
formed by feature vectors〈 f1, ..., fn〉 ∈ F1×F2× ...×Fn, is the similarity measure ordistance metric.

d : F ×F → [0;1]

δ = d( f1, f2)

defines the distance between two samples of the featureF , normalized to[0;1]; the normalization is
not necessary, but eases the classification step. A general distance metric has to fulfill non-negativity,
identity, commutativity (symmetry) and the triangle inequality. We would like to note that the range
of values inF can change (increase) during run-time, thus the distance of two given samples can also
change due to the normalization. Although this is no problem with the classification methods we have
studied, others might need modifications.

4.5.4 Adaptation Operator

Additionally, the second operator adapts/modifies a point (in one dimension) and is necessary for super-
vised and unsupervised learning.

α : F ×F × [0;1]→ F

f ′ = α( f ,g,a)

modifies the samplef ∈ F towardsg∈ F by a learning/adaptation factora∈ [0;1]. It is further defined
thatα( f ,g,0) := f andα( f ,g,1) := g, i.e. the minimum and maximum adaptation cases.

4.5.5 Examples for Feature Dimensions

This section gives some example definitions of both operators for a selection of the features we are
currently using in our experiments. They show numerical, binary and list feature types.

1. Signal strength: The Bluetooth, WLAN or GSM signal strength is a numerical, continuous vari-
able; therefore, we can apply the L1 (Manhattan) metric:

d( f1, f2) :=
| f1− f2|

Fmax−Fmin
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and
α( f ,g,a) := f +(g− f ) ·a

for samplesf1, f2, f ,g∈ F with maximum and minimum valuesFmax andFmin.

2. Associated to access point: This is a binary variable with valuesf ∈ {0,1}; the distance operator
can thus be simplified to the equality relation: (NOT XOR in boolean algebra):

d( f1, f2) :=

{
1 i f f1 = f2
0 i f f1 6= f2

A simple adaptation operator could be defined as

α( f ,g,a) :=

{
f i f a ≤ 0.5
g i f a > 0.5

which only sets it to one or the other value, depending on the current value of the adaptation factor
a. A better, although more complicated variant is to implement the operator with state so that it
internally sums upa and only modifies the feature value aftera reaches a certain threshold.

3. Number of MAC addresses in range: The number of Bluetooth peers or WLAN access points in
range is a numerical, discrete variable; we define

d( f1, f2) :=
| f1− f2|

Fmax

and

α( f ,g,a) :=

{
d f +(g− f ) ·ae i f f ≥ g

b f +(g− f ) ·ac i f f < g

for a number of already detected, different MAC addressesFmax. As explained earlier,Fmax can
increase during run-time when new, previously unknown addresses are found.

4. List of MAC addresses in range: The list of Bluetooth peers or WLAN access points in range is
a nominal, non-atomic variable. Due to the non-atomicity, there are various ways for coding; but
each valuef ∈ F can be seen as a set of addresses. For a list of addresses, we apply the Hamming
distance (the number of different addresses)

d( f1, f2) := |( f1− f2)∪ ( f2− f1)|

when f1 and f2 are sets. The adaptation operator can be arbitrarily complex; our current oper-
ator changes, according to the adaptation factora, a randomly selected fraction of the different
addresses inf andg to the addresses ing by adding and/or removing addresses inf . In practi-
cal implementations, it is advantageous to code the list of MAC addresses as a bit vector, where
addresses that have been gathered so far correspond to bit positions, which reduces the distance
metric to the computation of the bit-sum

d( f1, f2) :=
k−1

∑
i=0

(
1 i f f i

1 6= f i
2

0 i f f i
1 = f i

2

)
between bit vectors of increasing length.

It can be easily verified that the formal requirements on both operations are fulfilled by the above defi-
nitions.
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4.5.6 Time Features

One important aspect of context is generally the time, e.g. indicating if it is work or spare time, if there
are holidays or if the user is probably asleep. Various extracts of the system time in terms of a time
stamp could be used as independent features as well, e.g.:

• season

• month

• day of the week

• day of the month

• hour

• minute

• second

We speculate that these additional input dimensions might allow the clustering algorithm to find user
habits, i.e. temporal patterns, more easily. To evaluate this speculation, we conducted a short experi-
ment, feeding the implemented clustering algorithm with the extensive data set described in Chapter 6,
one time with additional time-based features and one time without. The results in terms of the final clas-
sification error clearly indicated that adding time-based features was disadvantageous for the clustering
algorithm, at least for this data set. Thus, we decided not to use time features for further experiments with
a similar setting, but they should be re-evaluated for other application areas. Due to the module-based
architecture and its consequential implementation, switching features on or off for the classification
algorithm can be done easily via configuration options.

4.6 Classification

The purpose of classification in general is to classify input vectors into a set of classes and it is usually
used to decrease the dimensionality of input data. There are two kinds of classification, depending on
the training data:supervised classificationto separate data points into known classes andunsupervised

classification, also calledclustering, to find previously unknown classes, solely based on the given input
data. Since we aim for unobtrusive operation of the whole system, supervised methods that demand an
a priori definition of context classes or continuous questioning of the user can not be applied. Thus,
we apply unsupervised classification methods, with the known disadvantage that “correct” classification
results are not known and, as a consequence, the evaluation and comparison of different methods is more
difficult.

4.6.1 Introduction

As depicted in Fig. 4.4, classification is the third step in our architecture and builds directly upon the
results of the feature extraction step. Its task is to find patterns in the feature space, which is spanned by
the feature vectors. Patterns in the feature space are accumulations of points that can be found by unsu-
pervised classification methods, or, as defined in [Nel01, p. 142]:a cluster can be defined as a group of

data that are more similar to each other than data belonging to other clusters. When certain regions of
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the feature space are well populated, this indicates situations, described by their corresponding sensor
values and the derived features, which the user or device regularly is in. However, as real-life situations
are always slightly different even on repetition of the same tasks, the features extracted from sensor
readings will also be varying. Therefore, points in the feature space will not be equal, but will be dis-
tributed over some region within the feature space. A classification algorithm should detect such regions
of accumulation and separate them from other regions that might belong to different situations and thus
to different context. The classes found automatically by the classification algorithm are regarded as the
different contexts.

4.6.2 Requirements

Context recognition by classification poses some requirements on the utilized clustering method, making
many well-known techniques unsuitable for this area. Because the intended context recognition should
be performed unobtrusively, the algorithms used for computation have to be mostly black-box, with
no tuning or parameterization being required by the average user. Therefore, the main requirement is
to yield useful results with no user intervention at all. It has to be noted that it will be possible to find
algorithms yielding significantly better results for any given scenario, when human experts can intervene
to tune the algorithm parameters. This thesis does not intend to produce perfect recognition of current
and prediction of future context, but to do it with a minimum amount of explicit user interaction. A
subset of the following requirements was first presented in [MRF03b], but they are described in more
detail here:

Online, life-long learning For information appliances, there is no dedicated training phase like for
a speech recognition engine that needs to adapt only once to a speaker. Since such a device has to
be operational at all times, learning has to be done continuously and in an unsupervised way. Batch
algorithms which iterate over the whole data set at once can not be applied. In [Ham01], this problem
has been taken up:

A shortcoming from the biological, as well as the technical, point of view originates from

the artificial separation of a lifespan into a learning and recognition phase.

For any practical application, learning has to be performed online and almost in real-time; it is not
feasible to log training data, in our proposed architecture in terms of time stamped feature vectors, and
process it offline. Therefore, the classification algorithm must immediately use new data as soon as it
is received. Because of limited storage capability, it is infeasible to store all past feature vectors. Each
new data point must be immediately incorporated into the internal data model so that it can be safely
discarded before the next sample time. This means that an online classification algorithm, when applied
in an offline manner, has a run-time complexity ofO(n) — every algorithm with a higher complexity
will most probably not be usable in an online, i.e. incremental, way.

Adaptivity Learning must never stop; as the user’s habits will change over time, classes must always
adapt to new feature values. This demands that all parameters of the classification algorithm are either
constant, i.e. chosen at implementation time without the need for modifying them during run time, or
self-adaptive. Continuously increasing or decreasing parameters like a “learning rate” of many common
neural network algorithms like the Kohonen SOM would be limited after a certain time of learning and
thus prevent an algorithm from running constantly for arbitrary periods of time without interruptions.
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Furthermore, it is computationally infeasible to re-compute the internal data structures, including all
classes, whenever an input (feature) vector is presented to the algorithm. Therefore, the algorithm
must adapt existing classes to slowly changing input patterns like long-term trends, while short-term
changes should form new classes instead of modifying existing ones. All parameters have to be adap-
tive, e.g. a learning rate should exhibit a long-term, adaptive changing behavior instead of a hard-coded
monotonous decrease.

Variable Topology Because the number of classes can not be determined a priori for the general case,
the internal structure and, in the case of connections between classes, the internal topology, must be
able to adapt dynamically. A good summary of the advantages of so-called growing networks, which
specialize on a variable internal topology, is given in [Fri96]: there are fewer parameters to define and
it is possible to interrupt the self-organization process, i.e. learning, and to continue it at a later time
since there is no distinction into different phases. The former advantage describes that the internal struc-
ture does not need to be specified in advance, but is formed during learning, which is important for
devices that should adapt to their user. The number of classes for matching input data should be handled
dynamically, increasing and decreasing it during run-time without recomputation of existing classes.

Clusters with arbitrary shapes The algorithm should be able to find clusters with arbitrary shapes,
including “holes”, where an area enclosed by data points belonging to a specific cluster does not belong
to this cluster itself. As real-world situations can vary in arbitrary ways while still constituting the same
high-level context, the clustering algorithm should be able to adapt to such feature vectors that are
dispersed but still belong together.
In the possibly high-dimensional input space, the algorithm should be able to find clusters in sub spaces
of this input space, as for some context, certain dimensions might not contribute at all to the characteri-
zation of the high-level context. With arbitrarily shaped clusters, sub-spaces can be found when a cluster
extends over a whole dimension of the feature space. When the algorithm is unable to deal with either
arbitrary shapes or explicitly with sub spaces, handling a large number of dimensions becomes increas-
ingly difficult, as the separation of classes in a high-dimensional space easily leads to overfitting and
thus poor generalization. This well-known “curse of dimensionality” (e.g. [Fri97a]) describes the expo-
nential growth of hypervolume of a function with its dimensionality and has also been acknowledged
in [Lae01] for the area of context recognition via clustering.

Soft classification Context classes are not mutually exclusive, but more than one context can be active
at the same time (e.g. “at home” and “sleeping”). Therefore, the output of the classification step has
been defined to specify the degree of membership (cf. [Nel01]) of each context class, i.e. a measure on
how well the classes match the current context, much along the same lines as the “fuzzy membership”
described in [MBS93]. The difference between hard and soft classification is that the former assigns
each input vector to exactly one class while the latter computes a degree of similarity to each output
class. Consequently, we utilize soft clustering algorithms in this architecture.

Noise resistance Owing to the noise that is intrinsic to physical sensing technologies, all algorithms
in this architecture have to cope with erroneous sample values. In unsupervised learning, where the true
output value, which in the case of clustering means the correct class memberships, is not known, it is
difficult to distinguish noise from different classes. A sample value that is far off the boundaries of an
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automatically formed class could either mean a sudden switch to another class, which we interpret as the
transition to another context, or it could be an erroneous sensor value. Ideally, a classification algorithm
should detect noise and discard it or assign it to a special class (this method of assigning known noise
to a special class is used regularly for supervised classification).
A special case are missing values, which occur when a sensor is unavailable at sample time. Missing
values are also considered as noise, but can be more easily detected than erroneous sensor values even
in unsupervised learning.

Limited resources Any algorithm that should possibly be executed on an embedded system has to
work within tight resource limitations. These resource limitations mainly include storage capability and
processing power, but other factors like limited battery life, which prohibits long calculations, need also
be taken into account. Aside from the run-time memory requirements, the amount of persistently stored
data should also be minimal to limit the overall memory consumption.

Simplicity In our case, the algorithm should perform as few distinct operations on feature vectors as
possible. As the feature extractors have to provide the necessary operators (cf. Section 4.5.2), a multitude
of operators complicates their implementation. A simple internal structure of the automatically formed
clusters eases their interpretability, which is desirable as to present users a human readable form of the
context classes. Ideally, expert users could be able to tune the class parameters to match their common
contexts best, but this would not only demand to interpret internal structures of the classification algo-
rithm, but also to modify them, which may be difficult for more complex algorithms. Furthermore, the
number of parameters that need to be specified for an algorithm should be as low as possible, because
it is difficult to optimize them when the feature vectors, and thus the shape of the feature space, are not
known in advance.

Privacy For privacy reasons, It should be impossible to deduce exact, past user behaviour from context
classes or the internal data structures. This implies that long-term time series of audio, video, etc. should
not be recorded and stored, even if the storage capabilities would allow to do so. A responsible handling
of user privacy is crucial to wide acceptance of context-aware systems.

4.6.3 Survey

In this section, a short literature survey of classification algorithms that might be suitable for the purpose
of context recognition is given. Supervised algorithms have not been considered for the classification
step, as they would counteract our striving for unobtrusiveness. As pointed out in [TIL04], users are
usually not willing to continually provide labels for their current context, which are a prerequisite to
applying supervised methods. Based on the above requirements, this literature study has the aim to
select the most promising candidates for implementation and a later quantitative comparison.

K-Means The k-means clustering algorithm is one of the simplest, yet best known clustering tech-
niques, sometimes also called c-means. Its name stems from the fact that the “k” or “c” denotes the
fixed number of clusters that the algorithm will compute, which has to be specified a priori. By an
iterative batch training, it minimizes the following cost function [Nel01]:
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I =
k

∑
j=1

N

∑
i=1

µji
∥∥u(i)−c j

∥∥
wherek is the number of clusters,N is the number of samples, i.e. the size of the training data, and
µji = 1 when the data sampleu(i) belongs to clusterj andµji = 0 otherwise. As can be seen, it simply
minimizes the sum of all quadratic distances of each data sample to its associated cluster center, which
is also called cluster prototype in some publications. Various extensions or modifications to k-means
have been proposed, e.g. for better performance [ARS98] or for dynamically growing the number of
clusters [DWM02]. K-means can be used in an online mode and is, due to its simplicity, very fast and
copes well with limited resources, but dues not fulfill our core requirements of soft classification or
variable topology. As there is no other parameter than the number of clusters, it could even be seen to
be adaptive.

Fuzzy C-Means (FCM) As a direct extension of the k-means algorithm, fuzzy c-means minimizes
the cost function [Nel01]:

I =
k

∑
j=1

N

∑
i=1

µv
ji

∥∥u(i)−c j

∥∥
with ∑k

j=1µji = 1, butu ji are no longer required to be equal to one or zero, but can assume some degree
of membership in[0;1] and thus make FCM a soft clustering approach. The power ofv determines the
fuzziness of the clusters in the interval[1;∞], which is usually chosen to be 2. Lower values enforce de-
grees of membership close to 0 and 1, i.e. a sharper separation. In addition to being an online algorithm,
still simple in terms of internal structure and fast, FCM fulfills the requirement of soft classification,
but fails on the variable topology and on the adaptivity aspects. The number of clustersk as well as the
fuzzinessv need to be determined a priori by the developer, which can not be done satisfyingly without
prior knowledge of the data set.

Neural Gas (NG) The Neural Gas algorithm is another extension to the k-means clustering algorithm,
which takes a “neighborhood ranking” into account [MBS93]. By not only adapting the “winning”
cluster center to a new data point but all clusters depending on their proximity to the new input, NG copes
better with nontrivial data distributions and generally reaches a lower cost function than the original
k-means. In each step, as a new data point is presented, the cluster centers are ranked according to
their distance to the data point, which makes NG also a soft clustering approach like FCM. When
the neighborhood ranking is limited to only the winning cluster, i.e. the nearest one, NG is equal to
the classical k-means [DWM02]. NG fulfills the same requirements as FCM, still requires an a priori
definition of the number of clusters and also necessitates a training parameter to be chosen, in case of
NG a decay constant for monotonously decreasing a learning rate. However, due to the ranking of cluster
centers, a sorting of a list ofN prototype vectors has to be performed, making NG slower than k-means
and FCM by a factor of logN, but with the gain of a lower cost function and thus better approximation
of the data samples.

Growing Neural Gas (GNG) The Growing Neural Gas algorithm is a further enhancement of NG
and belongs to the family of Cell Structure algorithms, which also includes Growing Cell Structures
(GCS) and Dynamic Cell Structures (DCS). GNG differs from NG in two important ways: it addresses
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the requirement of a variable topology by allowing the network to grow clusters as necessary and it
forms a graph between the cluster centers, which reflects the topology of the input data distribution.
This topology is used to adapt and insert clusters, in contrast to NG, where clusters are adapted based
on their distance to the new data point. Because k-means, NG and GNG all minimize the same cost
function [DWM02], their classification results can be easily compared and the trade-off between com-
putational cost and accuracy can be evaluated quantitatively. As GNG extends NG to also fulfill the re-
quirement of a variable topology, and can, due to the constructed topology, cope with arbitrarily shaped
clusters, it is the best candidate so far and is described in more detail below in Section 4.6.4.

Kohonen Self-Organizing Map (SOM) The Kohonen Self-Organizing Map is a variant of the Vec-
tor Quantization (VQ) technique, also developed by Kohonen. VQ is again quite similar to k-means in
online mode, updating the the “winner” cluster towards the new input data. Although the terminology
is different, as the clusters are named neurons for VQ, the basic concepts are very similar. The SOM
extends VQ roughly like NG extends the basic k-means clustering: ap-dimensional topology is es-
tablished between the fixed number of clusters and, in addition to the winner neuron, also neurons in
the neighborhood are modified by new data points. This neighborhood function, most often used with
a 2-dimensional topology, as well as a global learning rate are decreased during learning, which vio-
lates the requirement of adaptivity. Because the SOM is able to preserve a topology in the input data
distribution and map it to the typically 2-dimensional output topology, it is often used for visualizing
high-dimensional data. For the purpose of recognizing context by classification, the mapping to a lower-
dimensional space is not necessary and might even be counter-productive due to the information loss in
the topology. In its standard formulation, the number of neurons, i.e. clusters, also has to be determined
a priori, failing the requirement of variable topology, but some variants that overcome this issue have
been proposed, e.g. the Growing Grid (GG) [Fri95a]. Such variants fulfill the core requirements like
GNG, but are still less flexible in their growing process. Therefore, GNG seems to be a better candidate
for the classification step.

Spiking Neural Network (SNN) A recent branch of neural networks, the Spiking Neural Networks,
have also been applied to unsupervised clustering. SNNs differ from Artificial Neural Networks (ANNs)
in the type of information they handle. While ANNs traditionally work on real-numbered input vectors
which model the firing rate of natural neural networks, SNNs explicitly take time into account by pro-
cessing so-called spike trains (cf. [May02]). These spike trains better model the firing of neurons in
natural neural networks like the human brain and it has been recognized that SNNs might be better
suited for fast information processing than ANNs. Encoding information in single spikes — in their
relative times of occurrence — is one of the possible coding schemes in SNNs called “temporal cod-
ing”. The advantage of using this temporal coding for implementing well-known network structures like
the SOM (cf. [Ruf98]) or RBF networks (cf. [BKP02]) is that adaptation of neurons, i.e. clusters, can
be done locally. This gives the possibility of very efficient implementations of such networks directly
in VLSI, and thus of high network performance at low processing power. A multi-layer RBF network
with temporal coding has been shown to slightly outperform classical k-means and the SOM on Fisher’s
Iris data set [BKP02]. In general, SNNs are an interesting type of neural networks, but only recently,
methods for the evolution of the network topology have been proposed (e.g. [UPRS03] evolves SNNs
with Genetic Algorithms). With the current state-of-the-art in SNNs, the network structure needs to be
defined a priori, again violating the requirement for variable topology.
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Adaptive Resonance Theory (ART) Adaptive Resonance Theory is a series of networks for unsuper-
vised classification and has been developed to overcome the “stability/plasticity dilemma” (cf. [Gro76]),
i.e. the trade-off between convergence of the learning algorithm to some optimal solution and adaptation
to new input data that is present in classical networks like the SOM. ART networks solve this dilemma
by introducing the so-called “vigilance” parameter, which controls the boundary between inserting a
new cluster for representing new data and adapting old clusters. They are similar to vector quantization,
but implement a growing approach like NG or GNG. For new data samples, the “winner” cluster is
only adapted when its distance is lower than the vigilance parameter, else a new cluster is inserted at
the place of the new input point. Obviously, this vigilance parameter is crucial to the accuracy of the
classification, and it must usually be determined by trial-and-error [Nel01], violating the requirement
of adaptivity. Additionally, ART networks are very sensitive to noise, making them less suitable for
handling real-world sensor data.

IncrementalDBSCAN (IDBSCAN) The IncrementalDBSCAN algorithm is an optimization of DB-
SCAN for better performance, with a run-time complexity ofO(n) instead ofO(n2) [EKS+98]. DB-
SCAN is a well-known, density-based clustering algorithm from the field of data warehouses, which is
applicable to any data set that is embedded into a metric space. A metric space only demands the def-
inition of a distance function for any pair of data points, while e.g. the BIRCH algorithm is applicable
only to Euclidean vector spaces (cf. [EKS+98]). The DBSCAN algorithm finds clusters in a data set ac-
cording to their density and is also able to separate noise from clusters, and IDBSCAN is an incremental
variant of it, allowing to use the algorithm in online mode. The authors state that it can be proven that
IDBSCAN yields the same results as DBSCAN and thus it is only a reformulation. There are two param-
eters that have to be specified for (I)DBSCAN: a neighborhood radiusE psand the minimum number
of objects in a clusterMinPts. These parameters again make it difficult to apply IDBSCAN to context
computing, but the merging and splitting of clusters, described below in Section 4.6.4 as an extension
to GNG, is also an issue for IDBSCAN and it might thus be interesting if some of its concepts could
be used. According to [AGGR98], this algorithm is unable to find any clusters in subspaces of the input
space (a 5-dimensional cluster in a 10-dimensional input space was tested in the paper). Unfortunately,
even if the run-time complexity of IDBSCAN is linear, it seems to need to store previous data points
in the cluster definitions, which means that the memory requirements will be too large for embedded
systems.

Other interesting algorithms like e.g. BRIDGE, which is merging k-means and DBSCAN [DLX01],
BIRCH, which uses a hierarchical data structure [ZRL96], OPTICS, which is an interesting variant
of DBSCAN that eliminates the need to estimate itsE ps parameter [ABKS99], DBCLASD, which
does not require any input parameters at all [XEKS98], CLIQUE, which is able to find clusters in sub
spaces and generates minimal cluster descriptions [AGGR98], naive Bayesian classifiers or Support
Vector Machines (SVMs) have not been considered because there does not seem to be a reasonable way
to use them in an unsupervised or online mode. SVMs are a technique for classification that recently
received much attention, as they outperform most other algorithms on a wide range of problems [Bur98].
However, they are supervised two-class classifiers and the “unsupervised” variants are mostly one-class
classifiers that can detect abnormal outliers. Extensions to support multi-class classification basically
map the problem to multiple two-class classifiers. Additionally, SVMs are computationally intensive
and currently not well suited for embedded systems with limited computational resources.
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online X X X X X X X 2)

adaptivity X X 3)

variable topology X 4) X X
arbitrary shapes 3) 5) X
soft classification X 6) X X X X
noise resistance X X X X X
limited resources X X X 7) X X 7)

simplicity
parameters 1 2 2 6 4 n/a 1 2
operations 2 2 2 2 2 n/a 2 1
interpretability X X X 8) X

privacy X X X X X X X

1) hybrid: aspects of partitioning and hierarchical clustering
2) incremental run-time complexity, but problems with storage capacity
3) variants exist
4) might be possible, depends on exact network model
5) clusters are spherical, but the additional concept of meta clusters allows arbitrary shapes
6) in standard formulation: only ranking of classes
7) due to growing potentially more memory necessary
8) the cluster center can be interpreted in a similar way to k-means, but the additional meta clusters are more difficult

Table 4.1: General overview of algorithms for unsupervised clustering of sensor data

Summary

A comparison of the discussed algorithms and their compliance with the presented requirements is
listed in Table 4.1. In addition to the requirements, we also examine the type of an algorithm, i.e. if it
is partitioning (P) or hierarchical (H), and its basic approach, i.e. if it is distance (DI) or density (DE)
based. The three aspects of simplicity, namely the required number of parameters, the required number
of operations and the interpretability of the internal data structures, are listed explicitly for a more
detailed presentation. As can be seen, GNG fulfills our stated requirements best. Although it requires a
large number of parameters, results have been shown to be largely robust for parameter values within a
wide range. Therefore, the parameters can be considered constant for a wide range of application areas
and need not be tuned by application developers.
A quantitative comparison of the well-known k-means and SOM algorithms with GNG also showed that
GNG compares favorably, owing to its design that fits our given requirements better. This comparison is
presented in more detail in Chapter 6. Based on the results of this literature survey, the GNG algorithm
has been implemented and used for most experiments within our framework. It might improve the
overall classification quality when multiple classifiers are used in parallel and their results are combined
at the output of the classification step. A simple method would be to only take the ranking of classes
into account when combining the results, to avoid the issue of different distributions of the degree of
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membership scores between different classification algorithms [HHS92]. However, this requires the
classes to be comparable between the applied classification algorithms, which is typically only the case
for supervised classification. We do currently not see a method to apply this combination to classes
formed independently by multiple unsupervised classifiers. In the following, this thesis concentrates on
GNG and presents it in more detail, along with necessary extensions to apply it in the classification step.

4.6.4 Extended Lifelong Growing Neural Gas

GNG has been introduced by Bernd Fritzke in 1995 [Fri95b] and shares a number of properties
with the conceptually similar Dynamic Cell Structure algorithm, which has been developed indepen-
dently by Jörg Bruske and Gerald Sommer [BS95]. In 1998, Fred Hamker extended GNG to sup-
port life-long learning, addressing the Stability-Plasticity Dilemma (the original work was published
as [HG98], but extended in [Ham01]). The resulting algorithm has also been called Lifelong Grow-
ing Neural Gas (LLGNG). The main difference between GNG and LLGNG is that the latter uses lo-
cal error counters at each node to prevent unbounded insertion of new nodes, thus allowing online
learning for arbitrarily long periods. For the historical development of GNG and LLGNG we refer
to [MBS93, Fri95b, BS95, Fri97b, HG98, Ham01]. They have been repeatedly shown to outperform
classical approaches like k-means, RBF or SOM in some applications, e.g. in Mackey-Glass time
series prediction [MBS93], pattern classification and data visualization [Fri96] and on spectrometer
data [DWM02]. GNG also showed advantages over standard Multi-Layer Perceptrons in supervised
clustering for cancer diagnosis, but had problems with other data sets [HH97]. Although context recog-
nition data sets have not been investigated in previous publications, the wide range of problem areas
where GNG has already been applied successfully suggests favorable results also in the area of context
computing.
For continuous classification of feature vectors to recognize user or device context, it is important that
the applied classification algorithm is self-adaptive. Fred H. Hamker stated quite clearly why this is
important for tasks that involve adaptation over arbitrarily long periods [Ham01]:

Thresholds such as a maximal number of nodes predetermined by the user as well as an

insertion criterion dependent on the overall error or on a quantization error are not appro-

priate, simply because appropriate figures for these criteria cannot be known in advance.

Although parameters like the typically annealed learning rate for the SOM can be made self-adaptive,
others like the output grid size have to be pre-determined. LLGNG has been designed to cope with long
periods of learning.
GNG (and consequently LLGNG) shares its basic structure with many neural networks, including Ko-
honen SOM [Koh95]. It consists of a number of inputs fully connected to a number of competing output
nodes, also calledclusters(cf. Fig. 4.5). The output units are mutually connected (but not necessarily
fully), forming a neighborhood function. When applied to our classification step, inputs are the features
extracted from various sensors, which can be highly heterogeneous. The output units then represent the
recognized classes in the feature vectors, which are used for assigning labels. Those labels do not nec-
essarily have to be fully connected with the clusters, even a one-to-one mapping might be appropriate
if the clusters provide sufficiently high-level information. So far, this applies to the majority of neural
networks used for classification, or, more specifically, clustering purposes.
Each output node in GNG/LLGNG consists of an associated position, usually termedreferenceor pro-

totypevector, weighted edges to other nodes and local error counters. The basic principle is to insert
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Figure 4.5: Basic structure of GNG and LLGNG

new nodes (clusters) based on local error, i.e. to insert nodes where the input distribution is not well
represented by clusters. For classification of features to recognize context, this is an important property
because it ensures independence of the usually unknown input distribution; GNG can be seen to com-
bine aspects of hierarchical and non-hierarchical clustering. Additionally, edges are created between the
“winner” node, which is closest to the presented sample (in this case a feature vector) and the second
nearest one. Other edges of the winner node are aged and removed after some maximum age. The re-
sulting data structure is a cyclic, undirected, weighted graph of nodes and edges, which is continuously
updated by competitive Hebbian learning.
In LLGNG, nodes and edges are created and removed and weights are adapted based on local criteria.
The following algorithm is summarized from [Ham01], for further details we refer to it. For each new
input (feature) vector presented to the algorithm:

1. The nodeb which is most similar to the input vector and the second best nodes are determined
by calculating the distance of each node with the defined distance metric.

2. An individual quality measure is calculated forb and all neighbors based on their local error
counters.

3. The individual learning rate is calculated forb and all neighbors, which depends on each quality
measure computed in the previous step and the age of each node, with younger nodes featuring a
higher learning rate.

4. b and all neighbors are moved towards the new input vector according to their respective learning
rate.

5. After a certain number of adaptation steps, the nodeq with the highest value of the insertion cri-
terion is located and a new node is inserted betweenq and a neighbor. The new node is connected
to q and the neighbor with new edges and the edge betweenq and the neighbor is removed.
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6. After a certain number of adaptation steps, the noded with the lowest value of the deletion crite-
rion is located and removed, including all of its edges.

7. For the nodeb, the error counters are updated and the age and insertion threshold are decreased.

8. For all edges ofb, the age (i.e. their weight) is increased. The edge betweenb ands is assigned
an age of zero or created if it does not exist.

9. All edges that are older than a certain threshold are removed. If a node loses its last edge, the node
is removed as well.

In the following, the extensions to LLGNG developed for this work are presented:

Coping with heterogeneous feature vectors

To ease the implementation of heterogeneous features, we reduce the set of heterogeneous features
to a minimal subset of abstract features providing meaningful implementations of the necessary two
operationsgetDistanceandmoveTowards(cf. [MRF03a]). We ended up with an AbstractString, an Ab-
stractStringList and NumericalContinuous, NumericalDiscrete and Binary features as base classes for
the actual implementations. The NumericalContinuous, NumericalDiscrete and Binary features were
simple to implement, because they map from a numerical to a numerical space by implementinggetDis-

tanceandmoveTowardsas the Euclidean distance metric and thus need no special considerations. The
string based features are more difficult, as they are nominal in type.

Meta clusters

In the standard formulation of GNG and LLGNG, the edges in the internal graph are only used for three
purposes:

• For adapting neighbors (adjacent nodes) of the winner: The neighbors of the winner node (those
which are adjacent to it) are moved towards the presented sample, with a smaller adaptation rate
than the winner node itself.

• For inserting a new node between the winner and its neighbor: A new node is inserted between
the winner node and its neighbor with the highest quality measure (which is a local criterion) and
immediately connected to both by new edges.

• For removing nodes which have lost all edges due to edge aging: Those units which have lost all
edges due to edge aging are removed.

Additionally, the local insertion and removal criteria in LLGNG depend on the neighbors. As can be
seen, the edges are only used for the insertion, removal and adaption of nodes, but not for analyzing the
graph structure itself.
One of the problems with using standard, unsupervised clustering algorithms for context recognition
is that the automatically created clusters are usually too fine-grained for mapping them to high-level
context information like “in a meeting” or “at home”; for defining simple context-based rules on the
application level, we would like to achieve this granularity. Therefore, we introduce the concept of meta
clusters by explicitly using properties of the generated graph structure. To the best of our knowledge,
this information has neither been used for GNG nor for the LLGNG variant in previous publications.
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The idea of meta clusters is motivated by the fact that GNG/LLGNG preserve the topology of the
input distribution when mapping the output space. Thus, structures in the feature space will manifest
themselves in the cluster space. As already mentioned, the internal GNG data structure is a graph. The
GNG graph, after some learning time, usually consists of multiple components distributed over the
cluster space. These components consist of two or more connected nodes and are perfect candidates
for high-level context information, because they cover arbitrarily shaped areas in the high-dimensional,
heterogeneous cluster space instead of only RBF-type shapes that single clusters cover. This structure
within the cluster space actually represents a hierarchical context space as discussed in Section 4.2,
but restricted to two layers: clusters can be seen ascontext atoms, while meta clusters can be regarded
as a first level ofcontext aggregates. Although this automatically constructed hierarchy can — in the
present form — only span two layers, it demonstrates that more complex models of context can be used
within the classification step. As the class vector interface assumes a flat context model for simplicity,
the hierarchy needs to be mapped to a flat vector.
In our extended version of LLGNG, each component is simply assigned a unique meta cluster id and this
id is used for the mapping to high-level context information. Fig. 4.5 shows two meta clusters formed
by 8 clusters. For performance reasons, the meta cluster ids can not be recalculated after each step, but
have to be updated during online learning. When starting with two adjacent nodes in the initialization
phase, we simply assign the first meta cluster id to this component and cache the id in each node. During
online learning, insertion and removal of edges will lead to the following cases:

• Inserting a new node: Since a new node will only be inserted between two existing ones, its meta
cluster id is set to the id of the connected nodes.

• Inserting an edge between two nodes with the same id: No change is necessary.

• Inserting an edge between two nodes with different id: Due to merging two components, one of
the ids will be used for the resulting component, overwriting the other one. When both ids have
already been assigned to high-level context information, the merge is prevented by not inserting
the edge.

• Removing an edge: If the previously adjacent nodes are no longer connected, a meta cluster split
has occurred and a new meta cluster id must be allocated for one of the two components.

Normal adaptation of clusters has no influence on the graph structure and can thus be ignored for the
handling of meta clusters. Further (performance) optimizations for meta cluster handling in our exten-
sion include a caching of meta cluster ids and an incremental check if two nodes are still connected after
removing an edge. We also do not perform the complete meta cluster split procedure when one of the
components consist of a single node, since this (invalid) node without edges will be removed at a later
pruning stage anyways.

Additional performance optimizations

A few additional optimizations have been done, but they are aiming at enhancing the run-time per-
formance and do not introduce new concepts. By storing the nodes in a splay tree instead of a linear
list, analyzing neighborhood information before performing expensive operations on single nodes, and
caching internal computations we were able to achieve a speedup of over 1.9 compared to the straight-
forward implementation. These optimizations do not noticeably increase the required memory, but halve
the processing time.
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4.7 Labeling

Although unobtrusiveness is generally desirable for context-aware applications, in the end the success
of context computing will depend on applications that suit the user’s needs. As argued in [BBL+00]:

There will be no pure context-aware applications, since context-awareness on its own is not

something a user needs. Instead many see context-awareness as an enabling technology to

help other applications perform better.

The labeling step has the task to provide applications with high-level, descriptive, user-defined labels
for the otherwise automatically detected contexts. Therefore, it is the only step in this architecture that
requires user interaction and thus is critical with regard to our general aim of unobtrusive operation.
Nonetheless, a completely unsupervised operation of the whole system would not be suitable for prac-
tical applications, since the primary aim of context computing is to make interaction with computer
systems easier and more intuitive. It is important to involve users in the process of adapting applications
to the current context (cf. [Eri02, BD03]) as this can also make applications more trustworthy. A simple
yet effective way is to let users name common contexts by assigning descriptive labels to the context
classes discovered by the classification step. In the opinion of the author, this constitutes a good com-
promise between unobtrusiveness and user control, as only those contexts that are important to the user
will need to be labeled and the necessary interaction can be implemented in various ways appropriate
to the specific device and application. For example, an automatically recorded history of past contexts
could be presented to the user upon request to allow labeling with hindsight, or a discreet notice could
be shown on the device screen whenever a new, unknown context is encountered to allow an immediate
naming. If information appliances without such a common user interface are to be enhanced by context
computing, then interactive labeling becomes more difficult. However, the focus of this thesis is not in
HCI, so we leave conducting user studies to develop appropriate ways of interaction for the labeling it-
self for further research. Instead, we assume an assignment of labels to contexts as given and concentrate
on techniques for learning the given mapping. On the other hand, user studies on the practicability of
labeling at this stage of context recognition might give new insight into the acceptance of context com-
puting in real-world applications and should be covered by future work. The mapping of context classes
to labels corresponds to a connection between implicit and explicit context, which has been explained
in Section 2.1.2: implicit context is generated as the output of the classification step, but explicit context
allows users to exert control over context-aware applications. We think that both aspects of context are
necessary for seamless user interaction.
When an output, represented as a string, and an input vector, represented as degrees of memberships
for context classes, are assumed to be given for the labeling step, the underlying problem constitutes
a supervised classification problem and the task is to learn the classification from a given data set. In
this case, the question arises why a second mapping should be used, given that the first mapping, the
classification step, could in principle be made supervised and thus directly generate the user-defined
class labels. There are two reasons for purposely splitting classification and labeling: Firstly, when only
using supervised classification, learning of common patterns in the feature space could not start before
the user has assigned the first labels and it would thus be impossible for an information appliance to
continuously monitor and learn from its environment. Unsupervised learning in the classification step
effectively decouples finding common patterns in sensor values from the necessary user interaction to
bridge the gap between implicit and explicit context; only by this decoupling can we support an unob-
trusive operation where the times in which labeling takes place are controlled by the user. With a direct
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mapping from feature vectors to labels, a user would continuously need to assign labels when new con-
texts are to be trained. In [TIL04], it has already been documented that users did not adhere to constant
naming of the current context in an experiment. Secondly, automatically learned context classes describe
common situations and can be, even without user-assigned labels, helpful to applications. Furthermore,
the prediction step builds upon the results of the classification step and not on the labeling step, because
labeling enforces an information loss. Thus, a devision into two steps makes sense, even if the labeling
step is simple.
As already pointed out in [MRF03b], the complexity necessary for this step mostly depends on the
quality of the classification step. If classes are long-term stable, i.e. previously learned classed are not
overwritten by different new ones, then a simple 1-to-1 mapping of classes to labels is sufficient. How-
ever, if the used classification algorithm overwrites older classes in order to learn new contexts, then
the degrees of membership of all classes will need to mapped to labels. In [LL01], a simple k-means
clustering is used as a second step, i.e. for labeling, after clustering features. For each class, represented
by a winner neuron of the used SOM, k-means was applied to the input vectors of the SOM (which cor-
respond to feature vectors in our architecture) to avoid overwriting of labels. This additional complexity
is necessary because of the shortcomings of the SOM, and one of the reasons for selecting GNG for our
experiments. The same issue of overwriting already learned knowledge has been mentioned in [Ham01]:

While a gradual interference is unavoidable, the sudden and complete erasure of previously

well learned patterns - a catastrophic interference - severely limits life-long learning.

According to this, even a second layer of classification, embedded into the labeling step, is expected to
produce worse results than a simple mapping of labels on top of a more stable clustering, which has
overall less complexity. It is still an open issue if the classification quality will facilitate the use of a
simple 1-to-1 mapping or if a more complex n-to-1 mapping from the whole class vector to labels is
necessary with our selection of algorithms.

4.8 Prediction

The core part in our architecture is the prediction step, whose aim is to predict future context classes
based upon the observed history. As briefly mentioned in Section 4.1.3, our approach to enable a predic-
tion of future context is to interpret the context classes recognized by the classification step as “states”
of a state machine. This interpretation is motivated by observations of real-life situations: when consid-
ering fairly high-level contexts like “at work”, “in a meeting”, “giving a presentation”, “at home”, “in a
car” or “at the beach”, people are in many occasions engaged in only one at a time and advance from
one to the next. Of course, this only holds true for high-level context descriptions we aim for. Activities
like “writing an email”, “talking” and “sitting” are often done simultaneously. This issue points out the
dilemma of representing context at different levels of abstraction; a hierarchical model of context as dis-
cussed in Section 4.2 would allow to represent contexts composed of other, most probably lower-level
contexts in a recursive way. With the current interface to the prediction step, it is possible for arbitrary
detected context classes to be active at the same time, even if no structural information about relation-
ships or dependencies between those contexts can be communicated. The prediction step thus has access
to the activation of each automatically detected context at each time step and can construct a model of
the interrelationships. However, many prediction methods are univariate and can only cope with a single
time series. As we aim to provide high-level future context information to applications, a simplifying
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assumption is that applications can also benefit when they are only provided with the most likely current
and future contexts instead of a complete probability estimation over all contexts. This simplification
allows to consider a single trajectory of the respective best matching contexts at each time step and use
it as a base for context prediction. A similar state-based interpretation of user actions has been chosen
independently in [RC03].
When assuming a state machine as the underlying model, it is possible to monitor the trajectory of
active states, i.e. of active context classes. Recording this history and deriving the internal model from
the observed trajectory then allows to extrapolate into the future and predict the development of the state
trajectory, resulting in a prediction of future context classes.
An entirely different approach to context prediction would be to analyze and predict all sensor or feature
time series independently. This would allow to exploit domain-specific knowledge for prediction, like
geographical maps for location prediction [PLFK03] or calender information for activity prediction, to
complement the domain-independent mathematical prediction models and thus achieve higher accuracy
for predicting those time series. For a number of aspects of context and thus for features, stringent con-
straints can be specified that help to narrow the field of possible future values and help to interpret the
results of a prediction on those features. However, this approach would mean to pursue slightly different
aims; it would allow to respond to queries about future sensor or feature values, i.e. about future aspects
of the whole context, while we aim to predict the whole context. It would certainly be possible to use
the predicted and interpreted future values of all features as an input to the classification step and thus
also compute a future context class, but there is an issue that severely handicaps this approach. As it will
be varyingly difficult to interpret the predictions of different feature time series, the overall prediction
accuracies of the different dimensions in the feature space will also diverge. While predictions of some
dimensions like location-based features might be interpreted accurately due to well-known methods in
the respective areas, predictions of others like audio-based features will most probably be meaningless
for the longer term. Therefore, the combination of those predicted feature values in terms of the recog-
nized context class produced by the classification step is also expected to have a low overall predictive
accuracy. The reason is that all interrelations between the feature values from different aspects of the
whole context are discarded when predicting future values. Feature values are, at least in our assumed
area of embedded systems with integrated sensors, clearlynot independent of each other due to a com-
mon underlying cause, namely the situation, or context, that generated the sensor readings. Discarding
this statistical dependence accounts for an information loss. Although we expect this approach to be
inferior, we have not yet performed any quantitative comparison, which is subject to future research.
As can be seen in Fig. 4.4, the prediction step obtains its input directly from the classification step and
provides its output to the labeling step, which can then be used to map predictions to future context
labels. Therefore, the input and output interfaces of the prediction step are equivalent, both being a
vector of degrees of membership of context classes. This allows the prediction to be unsupervised,
like the classification step, and also allows to predict more than a single future “best matching” context,
because more information is available than after the labeling step. To be precise, the aim of the prediction
step is to generate future class vectors which have the same semantic meaning as the current class vector
provided by the classification step.

4.8.1 Requirements

With the same reasoning as in the classification step, a list of requirements on prediction methods for our
purpose is defined before a more detailed evaluation is presented. Again, the following list has previously
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been published in [MRF03b], but is shown in more detail below. The most important requirement is still
that the methods should be unsupervised and work without domain-specific knowledge or definition
of rules by experts. For our purpose, it is preferable to obtain usable results with no explicit training
and user interaction than to obtain a high prediction accuracy with parametrization of each system by
experts.

Unsupervised model estimation As mentioned, the internal model topology and the prediction
method parameters need to be estimated automatically without human interaction or explicit defini-
tion of input/output behavior by experts. For some methods that depend on an internal structure, this
includes not only to find suitable parameters, but also to find the model itself, as far as it is specific to
the application area. If it is not possible to find a model structure a priori for arbitrary applications and
contexts, then it must be learned while the system is in use.
This requirement is valid both for embedded systems, which typically have only a very limited way
of user interaction, and for services implemented within an infrastructure. Even if the recomputation of
predictive models was handled by infrastructure components instead of the end user devices themselves,
e.g. by a GSM service provider for the mobile phones connected to its network, human supervision of
the specific model selection processes would not be possible due to scalability issues. Human resources
are generally limited, requiring the use of unsupervised methods.

Online learning For information appliances in real-world scenarios, it is infeasible to switch between
artificially separated training and prediction phases or even to store enough history for a batch training
on extensive data sets. Therefore, the algorithm should continuously adapt its parameters during normal
operation, incorporating new class vectors as soon as they arrive. The reasoning for this is the same as for
the online learning and adaptivity requirements on classification methods: devices should be operational
at all times and explicit training phases impair their functionality. An exception to this is to store only
the recent history in detail, which could be used to optimize and/or evaluate the quality of the predictions
(by splitting the history in a training and a test set). This is discussed in more detail below in a separate
requirement.
For completeness, it should be noted that this requirement could be lifted when not aiming for con-
text prediction embedded into information appliances. If the recomputation of prediction models is
deliberately outsourced to services located in the infrastructure or to dedicated training systems like
in [Ore02], then batch training becomes feasible. Although this thesis primarily aims at making infor-
mation appliances capable of predicting context without any infrastructural support because this is the
more challenging area, the following survey of prediction methods also includes methods that rely on
batch training. On the one hand, some interesting and otherwise suitable prediction methods can not be
used in an online manner and, on the other hand, context prediction with the general approach presented
in this thesis can also be advantageous for non-autonomous devices. In the detailed survey presented in
Sections 4.8.4 and 4.8.5, it will be discussed for the specific prediction methods if they can be used in
an online mode and thus for information appliances or not.

Incremental model growth When new classes are detected in the classification step during run-time,
new dimensions will be added to class vectors. The prediction algorithm must be able to incrementally
increase its internal model topology without requiring a complete retraining. As mentioned, recreating
the internal model from scratch will in many cases be impossible, as the complete context history can
not be stored in embedded systems because of memory requirements and for reasons of privacy. It is
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currently unclear if shrinking of class vectors during run-time is also necessary or if “dead” classes that
were not activated for a certain time frame could simply receive a minimum probability estimation for
becoming active.

Confidence estimation The algorithm should be able to compute an estimation of the correctness of
the predicted context along with the forecast itself. This estimation can be used by applications as a
confidence measure to determine if the prediction should be relied on for certain actions. In [HKKJ02]
the authors also suggest to use confidence estimates for prediction and give the following reason:

Uncertainty plays an even more central role in reasoning aboutfuture states of people;

even perfect knowledge about a user’s current activities and intentions does not typically

extinguish uncertainty about the feature.

It is therefore important to supply applications with a measure of how certain a computed prediction is,
so that applications can treat uncertain predictions differently than more certain ones.

Automatic feedback The prediction engine should continuously estimate the next class vectors and
evaluate its estimations by comparing with the real class vectors when they are available. This can be
done even if the history is not recorded in detail, because only the next prediction needs to be stored until
the time of the prediction to allow a comparison between the predicted and the true contexts. Further-
more, if some part of the (recent) history is stored in detail, this data can be used to retrain the algorithm
by splitting the history in a training and test set, either when the user starts some “optimization” tool
or in idle phases. The difference to storing the complete history and thus enabling the use of batch-
only training methods is that with this method, the necessary storage memory can be limited without
impairing the prediction accuracy.

Manual feedback If some action that has been carried out automatically due to a forecast is re-
verted/canceled by the user, this forecast should receive a penalty to make it less likely the next time.
This methodology is known as reinforcement learning in machine learning and is a reasonable way to
introduce user feedback unobtrusively.

Long-term vs. short-term The used method should ideally be suitable, e.g. parameterizable, for dif-
ferent forecasting horizons, i.e. predicting context in the near future with high confidence, but also being
able to predict later context, most probably with lower confidence.

The developed framework is flexible with regard to the used algorithms, as they only need to implement
the input and output interfaces and fulfill the requirements to be usable. Although we have currently not
implemented a “meta predictor” as in [CYEOH+03] which combines the results of multiple prediction
algorithms running in parallel, this would be a worthwhile task for future work. Unlike the results of
the classification step, the output classes for the prediction step are clearly defined. Thus, combining
multiple results by merging the ranking of most likely future context classes seems reasonable for mul-
tiple prediction algorithms in our approach. In [HHS92], a few computationally simple methods are
described that could act as a basis for further research.



66 CHAPTER 4. CONTEXT PREDICTION

4.8.2 Aspects of Prediction

There are a few aspects to time series prediction that need to be considered. In this section, we examine
those that are important to context prediction.

Periodic patterns People are creatures of habit; we live with many recurring events, like day and
night, weekdays and weekends, lunch time, dinner time, seasons, holidays, birthdays and anniversaries,
etc. It is thus one of the most important aspects of time series prediction to find, analyze and model
such recurring events, which we callperiodic patterns. Although many of those patterns will occur with
common period lengths like days, weeks, months or years, the prediction method should not necessarily
be restricted to locating only patterns in such intervals. There might also be other, nonetheless regular
patterns at less common intervals, e.g. taking medication or feeding every few hours.

Sequential patterns The second form of habit is to do certain tasks in an established way, always
in the same or a slightly to a situation adapted but still very similar sequence. We call those habits the
sequential patterns, which are characterized by a list of sub-elements that compose a whole sequence.
In [GC03], sequential prediction has been defined as:given a sequence of events, how do we predict the

next event based on a limited known history.A prediction algorithm should identify patterns in the time
series even if they are not completely equal, but similar.

Long-term trends As habits can change over time, the prediction algorithm has to cope with such
changes and adapt to the modified habits. When sudden and drastic changes in some habits occur, we
do not speak of changed habits but of the formation of new ones. Such new habits should definitely
be learnedwithout forgetting the old habits, because they may only be temporary, e.g. while attend-
ing a conference or while being on holidays.Long-term trendsare slow, gradual changes that should
be followed by the internal model in terms of modification of learned habits. Although we already
demand adaptivity from the applied classification algorithm with the aim that long-term trends in the
contexts themselves are tracked, the habits consisting of periodic or sequential patterns on top of the
context classes can also change. A prediction algorithm developed for online and unsupervised learn-
ing is usually also adaptive, because new knowledge is automatically incorporated into the internal data
structures, also allowing to track long-term trends. However, not all algorithms automatically take trends
into account, so special considerations might me necessary depending on the used method.

4.8.3 Options for Prediction

With current prediction methods, two possible ways for predicting class vectors can be identified:con-

tinuous time series predictionon individual classes andcategorical time series predictionon the best
matching class trajectory. The former tries to predict the future development of the degrees of member-
ship of each context class, i.e. the probabilities that a certain context will be active at future points in
time. This approach inherently produces future class vectors of degrees of membership for each context,
because the semantics of the vector elements is not modified. For the latter approach, an integral view
is taken by considering only the “best matching”, i.e. the highest ranked context class at each time and
analyzing the trajectory of context classes to predict future best matching contexts. This does not impose
that only a single output value can be computed for each prediction; it is actually desirable to give an
estimation for each possible context, thus implicitly fulfilling the requirement of confidence estimation.



4.8. PREDICTION 67

By creating a complete vector of degrees of membership this way, the output interface for the predic-
tion step is satisfied in syntax and semantics. However, this is not an option for some categorical time
series prediction algorithms, as they can only create a single value on predictions, based on the past
categorical time series. For such algorithms, the single value can be trivially extended to the required
output interfaces by setting the respective predicted class to maximum, and all others to zero degree of
membership.
In the following two sections, a survey of appropriate methods for continuous and categorical time series
prediction is given.

4.8.4 Continuous Time Series Prediction

Continuous time series prediction tries to find a model of a system by observing its output in terms of
time series. The prediction problem can be defined as a mapping from a number of past samples of
the time series to a future sample value, typically with discrete time steps. For the general case, this
should not be confused with a sequential supervised learning problem [Die02], although time series
prediction can be expressed by supervised learning by taking both the input vectors, which are assumed
to be known for supervised learning, and the output vectors, which are assumed to be unknown, from
the same time series but splitting it into past and future. This approach is known as thesliding window

method[Die02, section 3.1]. In time series analysis, it is generally assumed that the input data includes
a systematical component and random noise. This noise complicates the identification of the patterns
and it is thus usually desirable to filter it out before analyzing the data. In the following, only a selection
of methods is presented that are either simple and well-established or seem appropriate considering our
requirements on prediction algorithms.

Statistical tests First of all, there are a few statistical tests that can be applied to time series data
to obtain a rough assessment of the underlying system that is generating it. Most of the time series
analysis methods only deal with stationary data, i.e. data without apparent trends or seasonality, which
are discussed briefly in the next two paragraphs. If a time series turns out to consist of independent
and identically distributed (IID) random variables, then no further analysis needs to — or rather can
— be done, besides estimating the mean and variance of this random distribution. A few statistical
test for checking the hypothesis that a time series is IID have been developed, including the sample
autocorrelation function, the portmanteau tests, the turning point test, the difference-sign test, the rank
test and others. We refer to [BD02] for a detailed introduction into the topic of time series analysis. For
practical time series analysis with limited resources, we recommend the turning point and difference-
sign tests as well as a test based on the sample auto correlation function, as they can be implemented
very efficiently in an online way with an upper limit on the memory requirements. In the developed
software framework, those tests have been implemented for online operation, i.e. it is not necessary
to have the complete time series available to perform the statistical tests, but they can be used for
continuous estimation during run-time. Only when one or more of the tests for IID fail is it reasonable
to perform further analysis and try to find a model of the time series for prediction. In the following, we
assume that the observed time series, i.e. the degree of membership of a certain context class, is not IID,
i.e. not randomly generated, but follows some systematical pattern that can possibly be discovered and
predicted.
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Trend analysis In theclassical decompositionof continuous, time series, data is represented by the
model [BD02]:

Xt = mt +st +Yt

wheremt is a slowly changing component called thetrend of a time series andst is calledseasonal

componentwith a known period lengthd. The remainder of this modelYt , also called theresiduals, is
assumed to be stationary and can be modeled by one of the known prediction techniques like ARMA.
In this classical decomposition, the trend can be estimated with a number of techniques like smoothing
with finite moving average filter, exponential smoothing, smoothing by elimination of high-frequency
components or polynomial fitting or it can be eliminated by differencing repeatedly. For a detailed
discussion of the different techniques, we again refer to [BD02]. For our current experiments, we do not
explicitly take trends into account, but have implemented an averaging predictor that can also be used
as a trend estimator and for smoothing.

Seasonality analysis The seasonal component in the classical decomposition is defined to fulfill
st+d = st and∑d

j=1sj = 0, i.e. to have a known period length and a mean of zero. For estimating the
seasonal function, it can be approximated by linear combinations, and it is possible to eliminate the
seasonality by differencing with a lag ofd. Both options require a known periodd, which can e.g. be
found by brute force methods. However, it is difficult to estimate the seasonality in an online way with-
out having access to the whole time series at once. Therefore, exact seasonality analysis seems to be
restricted to batch training approaches and can not by used in embedded systems. An estimation of the
lag, i.e. the period, can be taken from the sample ACF.

ARMA ARMA is probably the best known and most often applied method for stationary, continuous
time series prediction. It is a combination of autoregressive (AR) and moving average (MA) models
with discrete, equidistant time steps, consisting of linear terms. The univariate output, describing the
predicted next sample, depends on the present and the lastq inputs of the system and the lastp outputs
of the system. Before analyzing a time series with an ARMA model, it needs to be stripped from its
trend and seasonal components, as ARMA only deals with stationary data. Although it uses solely
linear combinations, it has been applied successfully in a wide number of application areas, e.g. for
optimizing distributed time warp simulations by predicting event arrival times [Fer99]. The Durbin-
Levison and the Innovations algorithms allow to estimate the AR and MA parameters of an ARMA
process given a time series [BD02]. After parameter estimation, it can be used to successively predict
the next sample value of the time series. A slight variation is the ARIMA model, which explicitly
includes a number of differencing steps for making a time series stationary before estimating the AR
and MA terms, and consequently needs integration steps for predicting a sample value, hence the letter
“I” in the name. Before the parameters can be found, the orders of the AR and MA components need to
be estimated, which is assisted by the sample and partial ACF and rarely needs to be larger than two for
AR as well as MA, but often depends on expert knowledge and trial-and-error. Thus, ARMA violates
our requirements of online learning and incremental model growth, but can still be applied to settings
with non-autonomous devices.

Generalized Linear Models (GLM) In [FK96], an interesting generalization of ARMA with online
update of the model has been recently presented. The authors presented a recursive estimation method
for time series analysis with GLMs based on so-called canonical link models, which have the advantage
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that the existence and uniqueness of estimators is guaranteed. By recursively computing the regression
coefficients of the estimation function, it can be used in an online mode, thus fulfilling our requirement
in contrast to the standard ARMA formulation. This is an interesting work an should be examined more
closely in future work when linear models are to be implemented as prediction methods within our
architecture.

Artificial Neural Network (ANN) Artificial Neural Networks are a family of methods following the
principle of combining multiple simpleneuronsinto a network structure to realize a desired behavior.
An artificial neuron is a simple unit which computes a linear, weighted sum with an additional output
function. The most important neural network type is the Multi-Layer Perceptron (MLP) with a strict
feed-forward architecture of three layers: the input layer is defined to assume the values of the input
vector and does not perform any further computation, the hidden layer is fully connected to the input
layer and usually uses the sigmoid function as output function, and the output layer with a number of
neurons corresponding to the dimensionality of the output vectors is again fully connected to the hid-
den layer and applies a linear output function. Such a MLP can be shown to be a universal function
approximator [Kol57], i.e. to be able to represent arbitrary, multi-dimensional functions. The aim for
a MLP generally is to learn the correct mapping from input to output vectors given a training data set
of corresponding inputs and outputs. As the network structure and the involved output functions are
typically defined a priori, learning the mapping accounts to finding a combination of weights for the
neurons in the hidden and the output layers that realizes the desired function. The well-known back-
propagation learning algorithm solves this problem for MLPs. This approach has the advantage that the
exact function does not need to be known nor does it need to be expressible in a closed mathemati-
cal form, because it can be learned from a given training data set, but it has the disadvantage that the
internal behavior of a neural network can not be analyzed analytically, but can only be simulated. For
finding a corresponding output vector to a given input, one has to calculate the outputs of the hidden
layer neurons and subsequently of the output neurons, which makes reasoning about the weight repre-
sentation difficult. For a thorough introduction of MLPs and the back-propagation learning algorithm,
see e.g. [Zel94]. In an extensive comparison with 16 time series of different complexity, it has been
shown that MLPs can outperform ARMA models for time series prediction in many cases [TF93]. For
better comparability, the authors have chosen the number of input units for the MLP to be equal to the
number of AR terms in the ARMA model for the respective time series, which is an interesting approach
to selecting the structure of a MLP and could be used as a basis for future research. An additional ad-
vantage is that MLPs can, due to their multi-dimensional output, be easily constructed for multi-step
prediction, whereas with ARMA models this can only be done iteratively with consequently limited
accuracy. Furthermore, MLPs are, owing to the use of sigmoid functions in the hidden layer, capable of
predicting non-linear processes which is not possible with ARMA. The main issue of neural networks
and more specifically MLPs is that they are also not suitable for adaptive, online operation and thus not
appropriate for embedded systems. Because the network structure needs to be determined a priori, they
fail the requirement of incremental model growth and because the back-propagation learning algorithm
is a batch algorithm by design, they violate the requirement of online learning. In typical experiments,
back-propagation needs hundreds of epochs (an epoch is a presentation ofall training examples to the
network) to achieve good results. Thus, online learning with only one epoch does not seem reasonable
for this type of neural network. However, for scenarios where batch training is acceptable, MLPs are
a viable option. A method for estimating the confidence of predictions from neural networks has been
developed and shown to produce good results on a complex time series [WN94].
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Support Vector Machines (SVM) Support Vector Machines are a newer technique for machine learn-
ing and are suitable for both pattern recognition and regression estimation, which can be applied to time
series prediction. The basic concept of SVMs is that data that is non-separable in its original space can be
mapped to another space where it is separable by a linear hyperplane. This hyperplane is chosen so that
the distance between the classes that should be separated is maximized. In the final solution of the sepa-
ration problem, the hyperplane is defined only by those data points that lie closest to it, i.e. those points
which are nearest to the other class and are consequently calledsupport vectorsbecause changing them
would also change the hyperplane and thus the solution of the training. If all other points from the data
set were removed or moved within the same class, training would still yield the same hyperplane. For a
detailed introduction of SVMs, we refer to the excellent tutorial [Bur98]. In contrast to ANNs, SVMs
always find a global solution and are therefore resistant to complex problems with local minima. They
also successfully address overfitting, which is a serious problem for almost all methods from the family
of ANNs. Although SVMs have started over two decades ago, they currently receive increasing atten-
tion because they have been shown to yield high accuracy and outperform competing methods for many
problems, including time series prediction [MSR+97, MOG97], in which we are currently interested.
As in many machine learning techniques, most of the practical problems can not be solved analytically
but need to be dealt with by numerical optimization. SVM training generally depends on constrained
quadratic optimization and, with current algorithms, SVMs bring forth extreme demands for processing
power and are thus difficult to use for embedded systems. For our purpose of context prediction, SVMs
can in principle be used in the same way as ANNs for continuous time series prediction, as there are
variants for regression. But there are other variants that could be used to predict the next best matching
context class when given the current and possibly past class vectors with degrees of membership, which
corresponds to categorical time series prediction. Very recently, a method for online training of SVMs
has been presented [AC03] as well as online time series prediction with SVMs [MTP03], but these re-
cent developments have so far not been evaluated with regard to usability within our architecture. They
are inherently unsupervised, but incremental model growth seems difficult even in the online variant.

4.8.5 Categorical Time Series Prediction

The approach of using continuous time series prediction independently on each of the context class
degrees of membership has a significant disadvantage that is not unlike the reason why we chose not
to predict sensor or feature values directly. Although some high-level contexts might be statistically
independent, most are presumed to be dependent. An example would be the two mutually exclusive
contexts “giving a presentation” and “in a concert”. The knowledge — or strictly speaking the estimation
with a high confidence — that one of the contexts is active is a strong indication that the other one is
not. As already mentioned in the introduction to the prediction step, we expect people to be engaged in
only one high-level context during most of the time, assuming a strong mutual dependency between all
context classes. This favors the second option for prediction, namely categorical time series prediction,
where the trajectory of the best matching context classes is considered. Although an integral model over
the degrees of membership of all context classes would not discard any available information at this stage
and at the same time consider the statistical dependence, this would necessitate a multi-dimensional time
series prediction. This can be performed with universal approximators like ANNs. Universal models
like ANNs could be the focus of future research by concatenating past values of multiple time series
into a single input vector, thus mapping the multi-dimensional problem to a single-dimensional one. In
the following, we examine single-dimensional categorical time series that only take the best matching
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context for each time step into account.
Many of the categorical time series prediction methods assume the Markov property, which supposes
independence between time steps. A first order Markov model assumes that the next state depends solely
on the current state, and consequently any relationship between separated states must be communicated
via intermediary states [Die02]. For context classes, this assumption is invalid for the general case.
E.g. when being in the context “walking in the corridor”, the probability that the next context will
be “at work” should be different when the previous context was “at home” from the case when the
previous was “at work”. In the first case, the user is probably just coming to the office in the morning,
while in the second case he might be leaving his office for lunch and it is thus less likely that he will
immediately return. However, models based on the Markov assumption have been used successfully for
many application areas where the assumption is also invalid, so they should not be excluded from our
survey. The list of models included in this survey is also not exhaustive, but should include the most
common ones as well as those that have been deemed well suited for this purpose.

Central tendency predictor The most simple prediction method is to predict the central tendency,
i.e. the average, value considering a window of then last values of the time series. A general average
can be found for any type of time series and is often chosen to be the arithmetic or geometric mean for
numerical and the median for ordinal series. For categorical time series of best matching context classes,
which are of nominal type with no order relation, the average over a time window can be defined to be the
value that has been seen most often, i.e. the peak in the histogram. Central tendency predictions can be
computed online in an unsupervised way and trivially support model growth. Furthermore, they can be
computed incrementally with constant run-time complexity and consume minimal memory. Thus, they
fulfill all of our core requirements, but mark the lower end of computational complexity. Obviously,
central tendency predictors can neither deal with periodic nor with sequential patterns, but are restricted
to smoothing the time series.

Finite state machine Another simple method is to apply finite state machines that can be used to
realize state predictors as described in [PBTU03b] for location prediction. Such state predictors are
essentially specialized central tendency predictors that remember only one state state to predict, but
have a certain “inertia” for switching states. E.g. a 2-state predictor only switches its prediction to a new
state if it has been observed at least twice successively and remains in its current state otherwise. As the
general central tendency predictors, arbitraryn-state predictors are unsupervised, online, cope trivially
with model growth and can be implemented very efficiently.

First order Markov model After the central tendency predictor, the next model with regard to com-
plexity is the first order Markov model. For each context, the frequency of each successor, often called
transition probability, is recorded and the successor with the highest frequency is predicted for the next
step. This has been proposed in [LC00] for controlling the context recognition process. When a transition
from the last recognized context to the current one was regarded as unlikely by the first order Markov
chain model, the current recognition was supposed to be discarded. In the same way, such a Markov
model could be used to predict the most probable context for the next time step. First order Markov
models are more complex than central tendency predictors, but still fulfill all core requirements includ-
ing model growth; the transition probabilities for a newly created context class can be safely initialized
with zero until transitions into this new context occur. The run-time complexity for online training and
prediction is still low enough to consume negligible processing power compared to classification.
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Month Day of month Hour Minute Frequency

7 10 23 15 0.001
7 11 9 00 0.001
7 11 15 30 0.002
... ... ... ...

Table 4.2: Example for a time-dependent transition probability table

Higher order Markov model When the underlying process suggests a dependency between pairs of
states that are not directly adjacent in the time series, then the first order Markov models can be extended
to not only depend on the current state for predicting the next one, but to take a number of past states
into account. This number of states defines the order of the higher order Markov models. Such models
are, in contrast to first order Markov models, capable of exploiting relationships between temporally
distant states. Subject to their order that defines the maximum distance between states for which a
relationship can be recognized, higher order Markov models can in principle account for sequential as
well as (relative) periodic patterns in the time series. Active LeZi is a specific algorithm that constructs
such models.

Active Lempel-Ziv (ALZ) The Active LeZi prediction algorithm has been developed for the
MavHome project and uses information theoretical principles to construct higher order Markov
chains [GC03]. Based on the Lempel-Ziv LZ78 compression algorithm, is has been designed as an
online and unsupervised algorithm. Incremental model growth is also possible, as the internal data struc-
tures are dynamically updated when new values in the time series are observed. Therefore, ALZ fulfills
our core requirements, but is slightly more expensive than simple first order Markov chains both in
run-time and memory complexity. By extracting phrases from the time series and incorporating con-
cepts from Prediction by Partial Match (PPM) algorithms, ALZ constructs weighted Markov models of
different orders and combines them into a common probability distribution.

Full model All models for categorical time series prediction that have been examined so far only
realize sequential prediction, but noabsolute periodic patternsare explicitly taken into account.
In [HKKJ02] it is also argued that taking the time of the day, in this paper in domain-specific ex-
tracts like weekdays, weekends, morning, lunchtime, afternoon, evening and night or the weekday into
account is valuable for prediction. By adding a dependency on certain aspects of the system time to
the transition probabilities, a full statistical model can be obtained. For first order Markov models, in-
stead of only recording a single transition probability from each observed context to every successor,
a time-dependent probability distribution could be recorded. Table 4.2 shows an exemplary probability
distribution for the transition from a high-level context “A” to a high-level context “B”: On July 10
at 23:15, a transition from A to B occurred as well as on July 11, 9:00. On July 11 at 15:30, the fre-
quency is higher because a transition from A to B occurred at the same date and time a year before.
Such a complete model allows to aggregate frequencies for different periods, e.g. hourly, daily, weekly
or monthly and thus compute different transition histograms based on different periods. The context
cube [HLA+04] could provide an effective means of storing the context history along with the history
of raw features and/or sensor values. However, it is currently aimed towards large context repositories
and an implementation with upper memory bounds seems difficult. An aggregated daily histogram, i.e.
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by only considering the hour attribute, of transitions from A to B might show peaks at 9:00 and 15:30
and thus indicate a high probability for predictions within these time frames. For higher order Markov
models like the ones constructed by Active LeZi, transition tables need to be recorded for each phrase
of context classes, at each level of the model. A model calculation shows the amount of memory neces-
sary for recording such a complete probability distribution: We assume that 30 distinct context classes
have been recognized by the classification step and that only a first order Markov model is used. For
each possible transition between any two contexts, i.e. 30×29, a table with the attributes month, day,
hour and minute with a granularity of 5 minutes will be stored and the frequency will be expressed as a
float value with 4 Bytes. Then, for each table 12×31×24×12×4 = 428544 Bytes will be consumed,
amounting to an overall memory usage of roughly 355.56 MBytes. This is a worst case model, because
for certain pairs of contexts the transition probability tables will be sparse and the overall memory is
consequently expected to be significantly lower for practical applications. On the other hand, this model
calculation only considered a first order Markov model, which does not seem appropriate for more com-
plex sequential prediction. By considering higher order Markov models, the number of transition tables
grows exponentially with the model order. Although the full model will attain the highest prediction
accuracy that can be achieved with the observed history of the time series, it is not practically applicable
for embedded systems with limited memory.

Hidden Markov Model (HMM) Hidden Markov Models are to be consideredthe standard model
for time series classification in many areas, e.g. speech recognition, handwritten character recognition,
gesture recognition or segmentation of DNA sequences. In context computing, they have been applied
at various levels, like recognizing location based on audio and video [CMP00], task prediction [RC03]
or action recognition [LBVW03]. So far we have only considered “exact” models that record, i.e. count,
occurrences of observed transitions and calculate probabilities from those transition frequencies. HMMs
are a more powerful model, but do not necessarily produce the same model when trained with identi-
cal training data. The reason for this issue is that during the estimation of the model parameters, the
typically used method, called forward-backward algorithm, leads to local maxima for this optimization
problem. Many practical problems have been found not to be solvable by simple Markov chain mod-
els, where the observations are mapped to states. HMMs thus add an additional hidden layer, hence
the name, which contains a Markov chain model that indirectly influences the HMM output via a sep-
arate probability distribution. To detail, a complete HMM consists of a set of states, a state transition
probability distribution, an observation symbol probability distribution and an initial state distribution.
When training a HMM model from a data set, the number of states and the connections between the
states need to be determined a priori and all three probability distributions are adjusted by training on
the data. For a detailed introduction into HMMs and the associated training procedures, we refer to the
standard tutorial [Rab89]. HMMs have been applied to many problems in time series analysis because
there exist mature methods for parameter estimation and simulation, building on a solid theoretical foun-
dation. However, as already mentioned, the parameter estimation is an optimization problem for which
no analytical solution is currently known. The training method is an iterative batch approach and we are
currently not aware of any online method that would allow to use HMMs in an online way in our archi-
tecture. Incremental model growth is also not supported, as the number of hidden states and the alphabet
of observation symbols need to be defined before training and can not be modified afterwards. The ma-
jor requirement of unsupervised operation is violated by the need to determine the number of hidden
states a priori. These issues restrict the HMM method also to scenarios where an autonomous operation
of embedded systems without infrastructure support for recomputation is not strictly necessary. Various



74 CHAPTER 4. CONTEXT PREDICTION

extensions of the basic HMM have been proposed to address state durations [LT99] or to deal with the
representational capacity of HMMs by adding structure to the hidden states. Especially the Factorial
HMMs (FHMMs) have been shown to outperform standard HMMs on time series with complex struc-
tures [GJ97] and could be beneficial for our purpose, while Coupled HMMs (CHMMs) [BOP96] might
be less suitable because unsupervised model estimation does not seem possible. The issue of selecting
appropriate numbers of hidden states has been tackled in [LB00], thus giving rise to unsupervised oper-
ation. By applying the Bayesian Information Criterion (BIC) [Hec95], HMMs become a viable method
for batch training approaches, but still seem unsuitable for context prediction embedded in information
appliances.

Bayesian Networks (BN) Bayesian (Belief) Networks are a superset of HMMs, Kalman filtering and
other probabilistic models [Mur02]. A BN is in general a directed acyclic graph (DAG) of nodes, which
represent the random variables, and edges, which represent the direct influence of one variable on an-
other. Within this structure, each variable is independent of its non-descendants given its parents, and
the network can thus be completely parameterized by specifying local models for each variable. In the
case of discrete variables with a finite set of values, a standard representation of these local models are
tables with conditional distributions. Due to the graphical representation of probabilistic dependence,
BNs have been widely successful for problems where prior knowledge exists and can be incorporated
into the model. Additionally, the dependence information in BNs has a causal semantics and is thus
often intuitive for some applications [Hec95]. There exist various approaches for learning the param-
eters of a BN from data, including the possibility to learn the model structure even from incomplete
data sets with missing values [Fri98] and to perform an online update of the structure [FG97], which
allows BNs to fulfill the requirement of online learning. However, the number and the structure of hid-
den variables used for describing influences on the observed variables also have to be specified a priori,
which leads to the same issues in unsupervised operation as present with HMMs. Dynamic Bayes Nets
(DBNs) [MM99] introduce time dependencies into the model and can be used to analyze time series. By
discretizing the state variables of a DBN, one obtains a HMM model with the standard properties. Con-
sequently, the forward-backward algorithm used to train HMMs can be seen as a generalization of the
belief propagation from BNs. Other types of DBNs deal with continuous variable distributions, which
is not necessary for categorical time series prediction and thus not considered within the scope of this
survey. A method for performing online learning of DBNs has been described in [Mur02, Chapter 6],
including the possibility to learn the structure of the network, thus fulfilling the requirement of unsuper-
vised operation. For the problem of context prediction, the more general class of DBNs does not offer
any immediate benefit over its special case of HMMs. As formulated in [RN95]:

The difference is that, by decomposing the state of a complex system into its constituent

variables, the DBN is able to take advantage of sparseness in the temporal probability

model.

For the categorical time series prediction approach to context prediction, the assumption that the system
advances from state to state implicates that there is only one discrete random variable. Therefore, the
special case of HMMs is sufficient for the assumptions stated earlier and is used as the representative
for DBNs in the remainder of this thesis. A more practical advantage of HMMs is that, being the older
model, there exist more mature software tools and libraries that can be readily used for context prediction
than there are for general DBNs.
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1 2 3 4 5 6 7 8 9 10 11 12 13

B 0 0 1 1 0 1 2 2 1 0 0 0 0
C 1 0 0 0 0 0 0 1 1 2 1 2 1

Table 4.3: Example for a probability distribution table for duration prediction

Episode Discovery (ED) In [CYEOH+03], Episode Discovery has been presented briefly as a data
mining algorithm that is capable of finding significant episodes in a time series, where a significant
episode was introduced as a related set of events that occurs at regular intervals. It is based heavily
on [SA96], but has been modified to cope with unordered in addition to ordered sets of events. In a
sliding window, ED searches for episodes using the minimum description length principle and describes
episodes with a so-called regularity factor, which can be daily, weekly or monthly, to achieve shorter
episode descriptions. An online variant has been developed and tested on artificial test data [DCB+02]
and, based from the description, it seems to be unsupervised and support model growth, but failed to
discover periodic patterns that were occurring multiple times a week [HC03]. Although the algorithm is
online and unsupervised, the description does not suffice to re-implement it and examine if incremental
model growth would be possible.

Duration predictor A new categorical time series prediction algorithm is currently developed within
the scope of our work for future experiments on context prediction. The basic idea is to build on the
durations in which the context classes are active and record not only the single transition probabilities
between states, but the complete probability distributions describing how long a specific context has
been active. Table 4.3 shows such an exemplary transition table for a context “A” with the recorded
transitions to contexts “B” and “C”. As can be seen, a transition from A to B is more likely when A
has been active for around 7 time steps, while a transition to C is more likely when it has been active
for longer than 10 time steps. This additional information helps to decide on ambiguities, when the ag-
gregated transition probabilities to different contexts are similar, i.e. when context B has been observed
after context A roughly the same number of times than C has been observed after A. As this discrete
probability distribution can not be used directly for each time step, a smoothing filter is applied before
searching for peaks in the histogram. The difference to recording the full model as described above is
that only relative times instead of absolute ones are stored, saving memory but also allowing to take time
into account, at least for sequential prediction. By exploiting the probability distributions, it should be
possible to predict the number of time steps that will most probably be spent in the current context and
thus to predict the time of the next context transition. Prediction of absolute periodic patterns, i.e. pat-
terns interrelated with fixed time periods like days or weeks, is not directly possible with this technique,
as there are still only durations relative between adjacent states available. This method for categorical
time series prediction is optimized to context prediction, where longer sub-sequences of equivalent con-
texts are observed in the given categorical time series. It is currently work in progress, but preliminary
evaluation results are presented in Chapter 6.
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4.8.6 Summary

For reasons described in the introduction of the prediction step, we currently favor categorical time series
prediction for its integral view on the problem over continuous time series prediction on the individual
context classes. As also stated in [MRF04b], we have currently not selected a specific algorithm for
the prediction step because our architecture is open for arbitrary algorithms that can be adapted to suit
our interface. Based on the presented literature survey, which accounts to a qualitative comparison of
possible candidates based on their features, we found the simple Markov chain models more suitable
than HMMs for online, unsupervised usage in embedded systems, mostly due to the supervised and
batch training method of HMMs. ALZ is a specific algorithm for constructing multiple Markov chains
of different order and unifying them in a combined model and seems to be suited well. A quantitative
comparison of ALZ with naive central tendency predictors and HMMs is presented in Section 6.4.
Experiments with continuous time series prediction comparing ARMA and ANNs are also shown in
this evaluation. For continuous time series, the online variant of regression with SVMs, also called
Support Vector Regression (SVR), is a very promising candidate and should be evaluated in even more
detail in future work. Various types of BNs might also be suitable, as there exist methods for learning not
only the model parameters as is possible with HMMs, but also the model structure. This would allow for
unsupervised learning but also needs further investigation. At the moment, the aspect of periodic pattern
prediction is missing from our analysis because of limited support by prediction methods for tackling
this issue in an online manner. Even the Episode Discovery algorithm, whose presentation by the authors
suggests that it can locate periodic patterns, actually locates sequential patterns. It was capable of finding
patterns with a common distance like daily, weekly or monthly, but is reported to have failed on patterns
that occurred multiple times a week. An example of a pattern that should be detected and predicted by
a suitable algorithm could be “each Monday at 13:15”. The well-known algorithms that are capable of
detecting arbitrary periodic patterns are aimed at databases where the full time series is available. In
such a setting, multi-pass approaches are feasible, but in the field of context computing, the involved
systems typically deal with data streams and therefore require a one-pass approach. An algorithm that
is claimed to work with a single pass over the data set has very recently been proposed [EAE04]. Its
authors state that it is the first published algorithm which can detect periodic patterns with an unknown
period length with a time complexity ofO(n logn) whenn denotes the length of the time series. With
this time complexity, it is currently unclear if a single pass is indeed sufficient, particularly because
the first phase of the algorithm comprises an expansion of the categorical input to a binary time series.
For this expansion, the set of symbols from which the categorical time series is constructed needs to
be known in advance, which can not be guaranteed for an online mode of operation. Periodic pattern
prediction is currently not solved for context computing with the requirements defined above, but is an
important area for improving the accuracy of context prediction. The newly published algorithm could
offer some possibilities for tackling this problem and lays ground for future research in this direction.
It might be necessary to use multiple different prediction methods concurrently and merge their results
to generate a reasonable forecast of the context trajectory. However, combining results of multiple pre-
dictors requires at least a ranking of predicted context classes by each of the methods and can benefit
from a more detailed confidence estimation. At the moment, the possible improvement in prediction
accuracy by combining multiple methods is unknown. A detailed investigation of this issue should be
subject to future research.
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Chapter 5

Framework

A software framework has been developed to perform practical experiments with context prediction.
Although the primary motivation for the development was a proof-of-concept implementation of the
presented architecture for context recognition, it has been developed with flexibility in mind and can
now be used to support arbitrary applications. The internal structure and details on the framework are
presented in an accompanying diploma thesis [Rad04].

5.1 Concept

Figure 5.1 shows an overview of the implementation, which closely resembles the architecture presented
in the last chapter and shown in Fig. 4.4. Reflecting the need to work with sensors, the framework needs
direct access to the specific hardware and is therefore situated between the hardware (but on top of the
operating system) and applications that utilize context information. To achieve a high level of flexibility
both during development and for application deployment, the core framework is kept as small as possible
and is strongly based on a modularized concept. It basically only manages the information flows between
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Figure 5.1: Conceptual overview of the framework
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the defined steps and provides interfaces for modules to implement these steps. The modules then realize
the functionality of the system, but are independent of other modules and thus easily exchangeable.
Three different hot-spots have been defined for adding modules:feature extractors, classifiersandpre-

dictors. All of these module types are realized as dynamically loadable libraries on those platforms that
support them, and a common framework configuration specifies which modules should be loaded upon
startup, i.e. during run-time. It is easily possible to use different features, classification or prediction
algorithms by only modifying this configuration and without changing any code. In Fig. 5.1, the respec-
tive interfaces that need to be implemented by the loadable modules areI1 for feature extractors,I2
for classifiers andI3 for predictors. The labeling step has currently not been realized as a module, but
is a part of the core framework. InterfaceI4 is therefore not designed for implementation by additional
modules, but is used directly by applications to query high-level context information. Additionally, the
framework provides a common facility for logging and replaying of previously recorded logs at two dif-
ferent interfaces in the architecture, namelyI1 andI2. This component allows for decentralized logging
of feature streams and identified contexts locally at each device, but centralized context data repositories
are not being considered. If a combined log of all feature streams and identified contexts of different
devices is desired, the individual local logs need to be transferred and merged by other means. The
integrated replaying component has been designed for a complete reproduction of the recorded feature
streams so that new classification methods can be evaluated offline on arbitrary data sets. It does not
provide random access to feature logs or past recognized contexts that could be utilized by classifica-
tion or prediction methods. Although a structured way of logging to and querying a central context data
repository could be added to the currently available logging and replaying component, this was not one
of the design goals for the framework. Its current aim is to support context recognition and prediction
locally at each device, and support for coordination of multiple networked devices is an issue for future
research.
In the following, the framework components are described briefly (for a detailed presentation
see [Rad04]).

5.2 External Interfaces

As expected, the framework has two external interfaces that it uses to communicate with other systems.
In Fig. 5.1, they are denoted asI0 andI4. At the input side of the framework,I0 connects directly
to the available sensors, while at the output side,I4 provides applications with recognized current and
predicted future context.

5.2.1 Sensors

The wide range of sensors that is currently available dictates a similarly large range of different inter-
faces for software parts to communicate with those sensing technologies. Although highly desirable, it
is consequently hard to define common interfaces for accessing raw sensor data. Sensor data can be ei-
ther event- or stream-based and different sensors require significantly different sampling rates and yield
heterogeneous values of various atomic and non-atomic data types. This diversity makes it very chal-
lenging to define a common interface that (a) is flexible enough to deal with all peculiarities of arbitrary
sensors, that (b) is easy to use and efficient in terms of the overhead for accessing sensor data, and that
(c) allows structured access to the sensor data on a semantic instead of a purely syntactic level. It is
obviously possible to define interfaces that fulfill (a) and (b), e.g. TCP streams that simply forward all
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sensor data in the native format of the respective sensor to a central location. However, such an interface
does not provide a standard, structured method of accessing this information at the receiver side other
than implementing an interpreter for each sensor stream independently. It is also easy to define inter-
faces that fulfill (b) and (c) by limiting the range of possible sensor values to either events or streams and
defining a common sampling rate over all sensors. Interfaces that fulfill (a) and (c) can too be defined,
but it is unlikely that they would be easy to use on both sides of the interface: for the wrapper modules
that provide access to some sensor via the common interface and for the framework that accesses the
sensor data.
Therefore, this framework takes a pragmatic approach to interfacing with specific sensors by not defin-
ing a common interface at this level. Instead, feature extractor modules access the respective sensors
independently and implement a common interface after the feature extraction step, denoted asI1. As
discussed in Section 4.5, the selection of features is highly domain-specific and correlated with the set of
available sensors, which too suggests a combined implementation of sensor data acquisition and feature
extractor modules. In contrast, the Context Toolkit uses a clear separation between sensors (wrapped by
“widgets” in the Context Toolkit), a combination of sensors (called “aggregators”) and components that
extract higher-level information from sensor data (called “interpreters”). This is clearly a more flexible
approach and can be easily distributed over multiple devices because the communication between the
components is based on HTTP. For the framework presented in this chapter, a more lightweight ap-
proach is used that does not depend on a network protocol internally and causes practically no overhead
in transferring data between its components. Because context widgets are roughly comparable to our
notion of feature extractors, an integration of both approaches is feasible. For automatic context recog-
nition and prediction as proposed in the present thesis but within a networked environment instead of
locally on individual devices, the Context Toolkit could be used to provide feature values for further pro-
cessing within this framework. Such a combination of both frameworks would support highly flexible
but still unobtrusive context-aware applications and is an issue for future research.
The external interfaceI0 at the input side of the framework is thus, in the current implementation, not a
common interface, but describes an arbitrary number of different, sensor-specific interfaces.

5.2.2 Applications

For applications, the framework provides context identifiers either in the internally constructed numeric
format or in terms of context labels defined by the user. Currently, only a pull mechanism is implemented
whereby arbitrary applications can poll for current and future contexts. This can either be done via a
direct method call when the framework is linked to the application or via a standard protocol for a loose
coupling. This protocol is also used for connecting user interface applications to the labeling step and
is described in more detail below in Section 5.4.4. When necessary, a push mechanism can be trivially
implemented within the current framework, which would allow applications to subscribe to specific
current or future contexts and receive appropriate notifications.
The external interfaceI4 at the output side of the framework is thus a method call interface accompanied
by a standard protocol for loose coupling of the labeling step.

5.3 Platforms

Portability was one of the primary aims during development. Therefore, the framework core is com-
pletely platform independent and should compile and run on any system with an ANSI C++ compatible
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compiler. There are some small support components that need to be adapted to specific operating system
APIs, mostly multi-threading support for sampling sensors at different sample frequencies and dynamic
loading of libraries for handling modules at run-time. These platform dependent parts have, at the time
of this writing, been implemented for:

Win32 This includes all Microsoft Windows operating systems starting with Windows NT 3.1, but
support for various sensors demands newer hardware APIs that are available since Windows XP.

WinCE Windows CE provides a subset of the Win32 API and is typically used on PDAs and smaller
tablet PCs or handheld PCs. Newer smart phones also use a variant of Windows CE as operating
system.

POSIX Multi-threading and dynamic loading of libraries have also been implemented for the POSIX
standard, but have only been tested on Linux with i386 and ARM processor platforms.

Symbian OS Many current smart phones are based on the Symbian operating system, to which the
framework also has been ported.

It should be noted that the platform dependent components mentioned above are small and can usually
be implemented with minor effort for other platforms. However, the interfaces that allow access to
sensors, i.e. to the hardware layer, are in practice significantly different and require adaptations in the
feature extractor modules.

5.4 Architecture

All major steps of our architecture, explained in detail in the previous chapter, have been implemented
within the framework, directly mapping the formally defined interfaces to interfaces in the OOP sense.
The sensor data acquisition step is not a separate part of the framework because it is closely coupled
with the feature extraction step and the discussed problem of external interfaces arises. Due to this close
dependency and because, from a software point of view, sensor data acquisition is usually limited to
using some hardware-specific API, the framework integrates it with feature extraction into a single part.
This does not prohibit to create feature extractors that rely on external sources of sensor data like context
widgets implemented by the Context Toolkit.
Of the four main parts of the framework, three are implemented as loadable modules and one is more
loosely coupled. This allows the framework to be extended in all four parts by either creating new
modules that can be loaded into the respective hot-spots or writing applications that can be coupled with
the framework. It would be feasible to define a loose coupling of all components via standard protocols,
and thus providing the possibility of distributed operation where different parts of the framework are
executed on different but interconnected devices. A subscription-based event or streaming interface
could allow classifiers to subscribe to feature streams and predictors to subscribe to recognized contexts
provided by classifiers. Applications would be free to subscribe to events or streams at all levels. The
necessary additions to the current framework are moderate and could be implemented solely within the
framework core and without modifying the currently defined modules. However, the main issue with
such an enhancement is to still allow the framework to be executed locally on resource limited devices.
This implies to make the loose coupling optional and retain the current method call interfaces with
their advantage of marginal overhead for those cases where distributed execution is not necessary. A
worthwhile compromise would be an integration with the Context Toolkit as mentioned above.
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<<Interface>>

Feature

getType() : short

getName() : String

getDistance(f: Feature) : double

moveTowards(f: Feature,factor: double) : void

clone() : Feature

serialize() : String

unserialize(value: String) : void

<<Interface>>

PersistentFeature

write() : Map

read(parameters: Map) : void

<<Interface>>

FeatureProvider

getFeature(name: String) : Feature

nextSample(checkpointTime: long) : void

getSample(name: String) : Feature

getName() : String

getFeatureList() : List<String>

NumericalDiscreteFeature

val : double

mival : Long

maxval : Long

getType() : short

getName() : String

getDistance(f: Feature) : double

moveTowards(f: Feature,factor: double) : void

clone() : Feature

serialize() : String

unserialize(value: String) : void

write() : Map

read(parameters: Map) : void

NumericalContinuousFeature

val : double

mival : Double

maxval : Double

getType() : short

getName() : String

getDistance(f: Feature) : double

moveTowards(f: Feature,factor: double) : void

clone() : Feature

serialize() : String

unserialize(value: String) : void

write() : Map

read(parameters: Map) : void

AbstractStringFeature

val : String

maxlength : Long

stringcode : Map

getType() : short

getName() : String

getDIstance(f: Feature) : double

moveTowards(f: Feature,factor: double) : void

clone() : Feature

serialize() : String

unserialize(value: String) : void

write() : Map

read(parameters: Map) : void

AbstractStringListFeature

vals : List<String>

getName() : String

getDistance(f: Feature) : double

moveTowards(f: Feature,factor: double) : void

clone() : Feature

serizalize() : String

unserialize(value: String) : void

<<use>>

Figure 5.2: Interface for feature extractor modules

5.4.1 Feature Extractors

Feature extractors are our chosen abstraction of sensors and offer a more general and higher-level access
to sensing technology. A feature extractor provides a number of heterogeneous features as defined in
Section 4.5 and is usually responsible for handling a specific sensor type. Fig. 5.2 shows the basic
interfaces intended for use by feature extractor modules and situated atI1 in Fig. 5.1. They are central
to the framework and are responsible for its flexibility in dealing with heterogeneous feature values.
The operating system or vendor-specific APIs used by feature extractors for accessing hardware sensors
are depicted asI0 in the framework overview. No assumptions about the communication with sensors
are being made. Consequently, it is the responsibility of a feature extractor module to ensure that it can
deal with the data rate of its associated sensor and that it fulfills the domain-specific quality criteria like
latency or computational accuracy. It is not necessary for feature extractors to manage extensive data
buffers, because the framework periodically polls current feature values from the providers. Typically,
only a single buffer for the most recent feature value needs to be maintained.
Feature is the connecting interface between feature extractors and the input part of classifiers. Its main
methods aregetDistance andmoveTowards, which are the implementations of the two methods nec-
essary to deal with an heterogeneous feature space and described in more detail in Section 4.5.2. In
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addition to these primary methods, a few additional ones are necessary for managing feature extrac-
tor modules:getType andgetName return the type (boolean, nominal, ordinal, numerical discrete or
numerical continuous) and a unique name, respectively,clone creates a complete, if necessary deep,
copy of the object and is used by classifiers, andserialize andunserialize allow to save and re-
store feature objects in a generic way. This generic serialization allows an implementation of a common
logging and replaying part that works with arbitrary feature extractors and is described in more detail
below in Section 5.5.PersistentFeature is derived fromFeature and extends it by the methods
write andread, which allow objects to save and restore static data, i.e. data that is not contained in
the feature objects but is global to all feature objects of the same type. Examples for static data are
minimum and maximum values that need to be persistent over restarts of the framework. A pool of
persistent data is managed automatically by the framework in a XML file, whose schema is presented
in [Rad04], for all registered feature extractors. For representing a whole sensor with possibly multiple
features,FeatureProvider defines three primary methods:getFeature andgetSample each return
feature objects by their unique name with randomized values and values representing the current sen-
sor readings, respectively.getFeature is used for the initialization of classification algorithms which
depend on random input vector prototypes, and the random initialization is obviously dependent on the
internal data of the specific feature implementations. AlthoughgetSample returns feature objects that
represent the sensor readings, it is defined to return a snapshot of the time that has been passed to the
last invocation ofnextSample. The reason for this separation is that different sensors usually require
different sampling intervals, andnextSample is therefore used as a means of synchronization over all
feature extractor modules.
These basic interfaces are sufficient to work with arbitrary, heterogeneous features. However, a
few common types of features occur in many cases, motivating the implementation of the de-
fined methods for the standard types.NumericalDiscreteFeature, NumericalContinuousFeature,
AbstractStringFeature andAbstractStringListFeature implement all necessary methods for
features that can be represented as a single integer value, a single real value, a single string, or a list
of strings, respectively. To use these types of features within feature extractor modules, it is sufficient
to override the methodgetName, returning a unique name of the implemented feature, and to provide
appropriate static variables, which need to be specific to each feature and can not be shared among all
features of the same type.

Available Modules

In the current framework, a number of feature extractor modules have been implemented for the most
common off-the-shelf sensors available in mobile devices. Only a few of them could be realized in a
platform independent way, like the virtual time feature extractor, and most need at least some platform
dependent code for accessing the operating system APIs to the respective hardware interfaces. Currently,
the following feature extractors are available:

Active window An important aspect of context is the activity of the user, and when interacting with
current computer systems, the application that is currently in use strongly suggests certain activi-
ties. This feature extractor only provides one feature: the name of the currently active application
or application window, depending on the platform. It has been ported to Win32, WinCE and
POSIX/X11.
Because the name of the currently active application or application window is a simple string, this
feature is derived fromAbstractStringFeature.
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Audio In addition to activity and location, environmental sounds can also give an indication on the
social aspect of context, e.g. if a user is talking or laughing. Typically from a microphone, this
module samples an audio stream and extracts the average loudness, the number of peaks and a
configurable number of FFT coefficients within a time window. By using a cross-platform library,
it runs under Win32, WinCE and Linux.
This module provides multiple features: the average loudness is derived
from NumericalContinuousFeature, the number of peaks is derived from
NumericalDiscreteFeature and all FFT coefficients are also derived from
NumericalContinuousFeature.

Bluetooth The social aspect of context is also partially described by the set of people that are in spatial
proximity, and location in terms of cell-based location information can be trivially inferred when
devices with a known location are in communication range. If a Bluetooth adapter is available in
a device, it can be used to inquire for other devices in range. This information is provided in two
different features, as a list of MAC addresses, and aggregated as the number of devices in range.
We currently have implementations for Linux Bluez, Widcomm and Digianswer Bluetooth APIs.
The list of addresses is derived fromAbstractStringListFeature, and the number of addresses
in range fromNumericalDiscreteFeature.

GSM Location information is also available from mobile phone networks, again in terms of cells. When
compared to Bluetooth, GSM has larger cell sizes and consequently a lower accuracy for location
tracking, but is far more widely available. In most cities, multiple GSM cells can be reached and
therefore allow for deriving location information with an accuracy of a few hundred meters, while
in less populated areas a single GSM cell can cover over 30 kilometers and therefore can only
provide very rough location information. For every device that is capable of connecting to a GSM
adapter via a (physical or virtual) serial port and accessing it with AT commands, a generic feature
extractor has been realized to provide the current GSM cell identifier. This currently works under
Win32, WinCE and POSIX and includes mobile phones connected via Bluetooth to the respective
device (cf. [MRF04b]).
Because the GSM cell id can be conveniently represented as a single string, the single feature
provided by this module is consequently derived fromAbstractStringFeature.

Network The network aspect of context describes the services available to the user, the bandwidth
and other network parameters and is important for applications that rely on communication or
infrastructure. Currently only for POSIX, this feature extractor can provide a list of all active IP
addresses reachable within a given subnet, representing the network aspect of the device context.
Although this leads to a slight information loss, the list of IP addresses is inter-
preted as a list of strings for simplicity; this allows to derive the single feature from
AbstractStringListFeature.

Power Another indication for the device location can be its connection to a base station or charger.
For Win32, WinCE and Linux with APM or ACPI, this feature extractor provides a single, binary
feature that indicates if the device is plugged into its charger.
Because this is currently the only binary feature, is is not derived from any of the standard feature
types, but is implemented as a special class. Due to its inherently simple design, it does not need
persistent static data and therefore implementsFeature instead ofPersistentFeature.



84 CHAPTER 5. FRAMEWORK

Time Time is obviously one of the most important parts of context information. From the system clock,
various features like day of week, hour etc. are provided.
This is also a special feature not derived from a standard type, but in this case it is derived from
PersistentFeature to save and restore the minimum and maximum timestamps.

Video The video feature extractor is currently in development and will provide a number of simple
features like the average brightness or the movement and is intended for devices like smart phones
that have a built-in, simple CCD camera.

WLAN Wireless LANs can also provide location information, but additionally contribute to the net-
work aspect of context. For location information, the accuracy of WLAN is between Bluetooth
and GSM based location tracking. If a device is equipped with a WLAN adapter, the list and num-
ber of access points or ad-hoc WLAN stations in range, the current device mode (client, ad-hoc
or master), the current ESSID, the MAC address of the access point currently associated to and
the signal level to this access point are provided.
The list and number of access points, ESSID, access point address and signal level
features are derived fromAbstractStringListFeature, NumericalDiscreteFeature,
AbstractStringFeature, AbstractStringFeature andNumericalContinuousFeature, re-
spectively. Like the power feature, the device mode feature implemented in this module is a simple
class not derived from the standard features and without support for persistent data.

WLAN access point For information appliances with infrastructure access, remote access points can be
queried for their list of WLAN clients, which can be used as an alternative to a locally connected
WLAN adapter for deriving a list of devices in range.
Similar to the network module, this feature represents the list of WLAN client MAC addresses as
a list of strings and is consequently derived fromAbstractStringListFeature.

Creating new Modules

For creating new feature extractor modules, it is necessary to implement theFeatureProvider interface
in a dynamically loadable library and export a global method namedgetProvider that returns a single,
static instance of the feature provider on each invocation. The implementations of thegetFeature

andgetSample methods can return an arbitrary number of different features, as long as each feature
is identified by a unique name. All of the methods specified byFeatureProvider are defined to be
non-blocking. If a feature extractors needs to poll for sensor values, this should be done in a separate
thread that is started during initialization. For implementing the respective features, the standard types
described above can be used in most cases.
Because integrating new sensors is done in terms of implementing feature extractor modules, with
the current framework it is not possible to directly re-use features implemented by different feature
providers, i.e. for different sensors. However, in practice the lack of modularization at this level turns
out not be an issue, because the available standard feature types typically limit the creation of a new fea-
ture provider to wrapping the respective API for accessing the sensor; the effort for applying standard
features on the sensor data is marginal.
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<<Interface>>

ClassifierAlgorithm

getClusterMembership(sample: List<Feature>) : List<double>

nextSample(sample: List<Feature>) : void

serialize(): String() : void

unserialize(data: String) : void

Figure 5.3: Interface for classifier modules

5.4.2 Classifiers

Classifiers are the second modularized part of the framework and are applied to the feature vector data
generated by the used feature extractor modules. In Fig. 5.3, the simple interface defined for classifier
modules is shown. It is situated atI2 in the framework overview and, in contrast to the feature ex-
tractor interface atI1, includes both the input and the output of classifiers. Similarly to theFeature

interface, there are only two main methods defined in theClassifierAlgorithm interface that need
to be implemented by each classifier.nextSample constitutes the input interface and is used to feed
new feature vectors into the classification algorithm, which is expected to immediately incorporate this
new data into its internal structures as demanded by our first requirement. As can be seen from the
interface definition, the feature vector is passed in terms of a list of objects implementing the central
Feature interface instead of a simple numerical vector. This definition allows the classification algo-
rithm to work on a heterogeneous input space with arbitrary types of features, avoiding a mapping to a
specific homogeneous vector space that typically implies an information loss. The second main method
getClusterMembership defines the output interface of classification algorithms and is used to retrieve
the class vector as defined in Section 4.2, i.e. a vector of class membership values in the range[0;1], for
a given feature vector. As for feature extractors, the methodsserialize andunserialize are used to
save and restore the internal data structures and state of a classifier in a general way.
Classifier modules are expected to meet the requirements that have been defined for the classification
step in Section 4.6.2.

Available Modules

At the time of this writing, only a single classifier module has been implemented within the framework:

LLGNG Building on the results of the literature survey presented in Section 4.6.3, the Lifelong Grow-
ing Neural Gas classification algorithm has been implemented as a classifier module. The advan-
tages of LLGNG with regard to the defined requirements outweigh its complexity when compared
to other, simpler methods. In addition to the standard formulation of LLGNG, the concept of meta
clusters has been implemented and is used for computing the class membership vector. In this im-
plementation, class memberships are not returned for the individual clusters but for meta clusters
defined by the internal topology of the LLGNG neighborhood. Various performance optimiza-
tions (as briefly described in Section 4.6.4) are responsible for the computational efficiency of the
current implementation.

Creating new Modules

Implementing new classifier modules requires to implement theClassifierAlgorithm interface and
create a dynamically loadable library that exports a global method namedgetClassifier. Similarly to
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<<Interface>>

PredictorAlgorithm

addContexts(contexts: List<double>,time: long) : void

getNextContexts(time: long) : List<double>

serialize() : String

unserialize(data: String) : void

Figure 5.4: Interface for predictor modules

feature extractor modules, this method should return a single, static instance of the classifier. Loading
a new classifier module into the framework during startup can be done trivially by specifying it in
the central configuration, which will cause the respective dynamic library to be used. Additionally.
the configuration allows an easy masking of features, so that some features are generated within the
framework and included in all feature vectors but not used for classification. This allows to provide the
selected features to the logging part or directly to applications even if they are known to be unfortunate
for the classification step (cf. Section 4.5.6), but has to be considered in all classifier modules by ignoring
those elements of the feature vector that are marked accordingly.

5.4.3 Predictors

The third hot-spot for loading modules into the framework are predictors, denoted asI3 in the frame-
work overview. Fig. 5.4 shows thePredictorAlgorithm interface, which also defines both the input
and the output of predictors. Following the style of the other interface, there are again two main meth-
ods:addContexts is used to update the internal models of prediction algorithms with new class vectors,
given in the same representation as returned by classifiers, andgetNextContexts returns a predicted fu-
ture class vector in the same format. For both methods, a time stamp must be passed that specifies, in the
case ofaddContexts, the time when a class vector was generated or, in the case ofgetNextContexts,
the time for which the prediction should be computed. This interface closely reflects the more abstract
one presented in Section 4.2, but has been defined explicitly for online operation of predictors. Again,
the methodsserialize andunserialize are used for saving and restoring the data models constructed
internally by prediction algorithms.

Available Modules

In contrast to the single classification module, multiple prediction modules have already been imple-
mented. The reason is that the literature survey presented in Sections 4.8.4 and 4.8.5 did not result in
one algorithm that shows clear advantages over other alternatives. Additionally, the trade-off between
computational and memory complexity and prediction accuracy can most probably not be decided for
the general case. A set of available predictors allows to select an appropriate one for the intended ap-
plication area. At the moment, the following algorithms for prediction have been implemented either as
helper functions or as complete predictor modules:

Statistical tests A number of statistical helper functions have been implemented for testing the hypoth-
esis that a specific time series was created by an IID process.

ACF An approximation of the sample autocorrelation function has been implemented that can support
a parameter estimation for other predictors.
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Central tendency predictor For comparing more complex prediction algorithms with a “baseline”, a
simple average predictor for categorical time series has been implemented with a sliding window
approach.

ALZ The Active Lempel-Ziv algorithm has been implemented as one of the most promising candidates
for categorical time series prediction.

HMM Although it could currently not be implemented in a completely online way, a HMM prediction
module has been written which applies a similar method for predicting categorical time series
as described in [RC03]. This module is based on the open source GHMM library available at
http://ghmm.org/.

Duration predictor A preliminary version of the duration prediction algorithm described in Sec-
tion 4.8.5 has also been implemented, but is at the time of this writing still in development to
improve prediction accuracy.

Besides the statistical tests, currently no continuous prediction techniques have been implemented, but
categorical time series prediction is favored for the reasons given in Section 4.8.5.

Creating new Modules

For creating new predictor modules, it is again necessary to implement the respective interface, in this
casePredictorAlgorithm, and create a dynamically loadable library that exports a method to return
a single, static instance of the predictor object, in this case calledgetPredictor. In many cases, the
underlying prediction method will be unable to compute complete future class vectors for arbitrary
points in time; some methods are only capable of predicting a single, best matching future class instead
of the whole probability distribution (i.e. categorical time series prediction methods), and most of the
well-known methods are based on time steps with a fixed step width, which makes exact prediction
at arbitrary times impossible. The interface shown in Fig. 5.4 includes only the most flexible variant
of getNextContexts, which can naturally be used for all types of prediction methods. When only a
single, best matching class can be predicted, then this class can be set to the maximum probability in
the class vectors and all others to zero, and for methods using fixed time steps internally, the returned
prediction can either be interpolated or set to the nearest time steps. However, for an easier or more
accurate way of dealing with these issues, additional variants ofgetNextContexts have been defined
that suit certain types of prediction methods better but are no longer general. These variants can be
called directly by applications that query for context predictions, but then those applications depend on
the type of prediction method. In the general case, a new predictor module only needs to implement the
most flexible variant ofgetNextContexts shown above, but may choose to implement additional ones
for simpler access or increased accuracy.

5.4.4 Labeling

The labeling step of our architecture is not within the main focus of this research, as most issues are
attached to HCI. Therefore, it has currently not been realized with modules in the same way as the
other steps, but by using standard protocols for communication with the independently developed user
interface. This has the advantage that the user interface can reside on another device if the applied
protocol is network transparent. For context awareness in information appliances without a powerful
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input/output user interface like display and keyboard, labeling is still possible by executing the interface
on spatially close devices that offer appropriate input/output capabilities.

Available Protocols

In the current framework, two protocols have already been implemented that can be used for communi-
cation between the core framework and an external user interface application which is responsible for
labeling.

COM As an established standard on Windows systems, COM allows comparably simple and efficient
communication between independent applications without requiring any further middleware or
third-party libraries. In the current framework, COM is implemented in the core framework as
well as the example labeling application.

SOAP For communication between heterogeneous platforms, COM is not suitable due to its tight inte-
gration with Windows operating systems. SOAP is a standard for exchanging structured messages
in a heterogeneous environment, including support for remote procedure calls, and builds upon
XML messages transferred over various protocols. HTTP is one of the transmission protocols that
can be used by SOAP, with the advantage of being broadly available in TCP/IP based networks.
Within the core framework, a SOAP service has been implemented that can export the current,
most likely context via a SOAP interface over HTTP. As SOAP is currently not integrated with op-
erating systems, the open source library gSOAP (http://gsoap2.sourceforge.net/) is used
for this service. Although SOAP guarantees interoperability with clients using other libraries, it
necessitates to include a minimal HTTP server in the framework whenever the SOAP service is
needed. This server is running continuously in the background and therefore requires a properly
working TCP/IP environment on the respective platform and might lead to security issues when
no further measures for protection are taken. Generally, the SOAP service allows a flexible im-
plementation of user interfaces for labeling, but imposes additional requirements on the platform
that executes the framework.
The corresponding example user interface application has been realized as a traybar applet that
can access the exported context identifiers and provide a mapping to context labels as specified
by the user.

Creating User Interfaces for Labeling

For developing custom user interfaces that implement the labeling step of the framework in a suitable
way, both protocols integrated into the core framework can be readily used. SOAP is the more flexible
variant and is easy to use due to extensive library support. A WSDL schema for the SOAP service is
included in the source code distribution of the framework and allows the development of compliant
SOAP clients. This approach is suitable for research on the labeling step and for building prototype ap-
plications, but causes too high an overhead for on-device context recognition and prediction. When the
scope and properties of a user interface application have been sufficiently investigated, an implementa-
tion directly on top of the framework methods, avoiding the overhead of one of the protocols, is more
reasonable.
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5.5 Logging

For evaluating a specific context-aware system and selecting appropriate modules, there is a strong
need for logging and offline processing during development of context-aware applications. Therefore,
the developed framework supports logging of feature and class vectors in a general way, independent
of the specific modules. On application demand, logging can be attached to the feature and context
class interfaces at the outputs of the feature extraction and classification steps, respectively. For feature
vectors, it is also possible to replay recorded logs for offline processing and tuning of classification
methods. Details on the current, preliminary log format have been presented in [MRF04a]. It is ASCII
based to allow importing the data into third-party software packages and copes with the heterogeneity in
feature values, but has been defined without interoperability with other context computing frameworks
in mind. Future formats should be based on XML and support different sample rates as well as event
streams, which are both not considered in our preliminary format.

5.5.1 Requirements

As already presented in [MRF04a], the definition and usage of this preliminary log format led to a few
insights on context recognition data sets: the format should be

easy to useExperience shows that one of the most important properties is the ability to import the data
sets into various software packages for data processing. Although our current semicolon separated
format was adequate for first tests, XML is more appropriate for public data sets and benchmarks
due to better extensibility and tool support. Powerful tools like XSLT processors allow simple
transformations of the log data in the case that a specific tool can not directly import it.

self contained Using different files for storing the actual time series and the meta data about features
also turned out to be disadvantageous. Even if the handling of a combined data format (with meta
data in a header and time series in a log section) leads to more complex writer and parser code,
this is compensated by the clearly simpler administrative handling of a single file for each data
set instead of two files belonging together. However, in a few scenarios it was necessary to update
the meta data file immediately after writing each log line because a clean application shutdown
could not always be guaranteed due to low battery failures. To prevent a corruption of the whole
data set with invalid meta data, as it had happened before implementing the synchronous update
of the meta data file, it must be guaranteed that the meta data section is always up to date. With
a combined XML file, we do currently not have a solution for that problem; the whole file would
need to be re-written for each new log entry because the meta data header might change. But this
would lead to a significant performance degradation. With the current format, it is sufficient to
append a line to the log file and update the (small) meta data file.

open During modification and extension of our logging framework over a period of a few months, the
definition of an abstract persistent storage area allowed great flexibility in adding new types of
features without needing to adapt the log format; we definitely recommend to let each feature
(i.e. each dimension of the feature vector) read and write its own persistent storage in the form
of arbitrary XML elements. The ability to add additional elements in future versions without
breaking older data sets makes XML generally more future-proof.

An extensive data set has been collected using this general logging component within the framework
and was subsequently used to compare classification methods quantitatively by replaying the feature
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log. More details on the data set are given in [RMF04] and the offline comparison is presented in detail
in Chapter 6.

5.5.2 Repository for Public Data Sets

For many research fields, a public repository of data sets significantly fostered research on comparing
methods quantitatively. For context computing, no commonly accepted data sets are currently available
that could be used to compare the context recognition accuracy with other research projects. A first
step towards such data sets has been done by the development of a publicly accessible repository at
http://www.soft.uni-linz.ac.at/Research/Context_Database/. Although a first proposal was
to use a Wiki [LC01] as a common repository, which has proven successful for the Portland Pattern
Repository [PPR], it has been jointly decided that, at the time of this writing, a moderated data base
is more advantageous. In addition to a structured way of storing meta data along the actual data set,
it also allows a moderation, both of which is difficult with a Wiki. For future research, this repository
can provide common, accepted data sets for evaluating results in context recognition and prediction.
A benchmark data set for context recognition could inspire research on context computing and make
results of different research groups comparable.

5.6 Open Issues

Although the framework structure is complete and a number of feature extractor, classifier and predictor
modules have already been implemented, it has to be considered preliminary and prototypical at the time
of this writing. The module interfaces and data flows are complete, but framework services like logging
or labeling still need to be improved with regard to stability and fault tolerance when the framework
should be used on embedded systems. It is still an open issue if multiple predictor modules will need to
be combined to achieve good prediction results or if a single predictor module is adequate.
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Chapter 6

Evaluation

In this chapter, a first evaluation of the developed architecture for context prediction is presented. This
evaluation is concerned with the principal methodology of predicting context at the level of abstract con-
text identifiers; it should be seen as a feasibility study by proof-of-concept implementation. Although
multiple methods for the classification and prediction of context are compared in the following sections,
the purpose is rather to allude to the vastly different results than to select a “winner” among the cho-
sen set of methods. It should be pointed out that the classification and prediction accuracies from this
evaluation might not be transferable to other application areas, but should only give an indication on
which methods are more appropriate than others for context prediction. For a systematic selection of
methods, a variety of data sets from different application areas need to be considered, but this is outside
the scope of the present thesis. The evaluation presented in the following serves as a proof-of-concept
for the developed architecture and its implementation in terms of a software framework.

6.1 Experimental Design

In most current research projects concerned with building context-aware applications, researchers
are both the designers and at the same time the subjects of a usability study or system evaluation
(cf. [Sch02a, section 2.4]). This “living laboratory research method” is often necessary, as research
methods are still being developed and the necessary hard- and software is typically following the most
current developments or is even prototypical. Nonetheless, feasibility studies should be conducted not
only within such a “living laboratory”, but should include different test subjects or real-world situations.
Some current projects like the activity recognition described in [LWJ+04] already collected test data
with multiple, arbitrary test subjects to allow variability in the recorded data. To still have some con-
trol over the experiments, test subjects were instructed to follow a detailed script of actions as closely
as possible. This methodology has proven successful and thus, for creating a benchmark data set for
context recognition, detailed scripts should be used for different scenarios. These scripts can then be
followed by independent test subjects for collecting sensor data for context recognition, getting closer
to real-world applications. Gathering sensor data with test subjects is an issue for future research.
Although such an approach with multiple test subjects allows a better assessment of the results and
is thus appropriate for creating benchmark data sets, a different method is employed in this evalua-
tion; besides the personal resources necessary for conducting such a study, it would counter our aim
at unobtrusiveness. When aiming for unobtrusive, background applications with continuous learning
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and adaptation, a detailed script that is necessarily limited to a short time span can not be considered a
viable approach. It can not cover the challenge of learning common contextual patterns and behavior,
which is the main aim of the present thesis. Therefore, a data set collected over a longer period seems
more appropriate and is consequently used as the basis for the following considerations. An important
property of this evaluation is that the framework described in Chapter 5 was used in its standard mode
of operation, running in the background without any user intervention. Although this does not allow to
compare the results of the classification step, i.e. the recognition of current context, with known values
simply because thereare no known values, it can show the feasibility of a completely unsupervised
approach.
From the possible application areas described in Section 2.2.1, a combination of reconfiguration and
alerting seems a worthwhile compromise between added benefit for the user and viability. Short-term
context prediction with prediction horizons in the range of a few hours can already offer distinct benefits
but is still realizable with the current results. For this chosen application area, the office is an obvious
setting because alerting is well understood in this environment and reconfiguration is a frequent issue
for many office workers who are involved with computer systems. However, it is not the only setting
where these issues are relevant and a more complete coverage of a user’s contexts is desirable. In the
following considerations, almost all situations in which a specific user interacted with computer systems
are included, ranging from office settings and lectures to playing computer games. For this scenario, a
number of relevant aspects of contextual information can immediately be identified (cf. Section 2.1.3):

Geographical Location is certainly an important aspect of the user context and is considered important
for this scenario. The following sensor technologies could be used to extract location information:

• GPS: This is probably the most prominent location sensing technology and is suited well for
most outdoor applications.

• GSM: As a cell-based network, GSM provides location information only on the level, i.e.
granularity, of the operator defined cells, but provides good coverage including indoor areas.

• Indoor location tracking systems: Ultrasound location sensors allow very accurate tracking
of people and objects with an accuracy of a few centimeters, but require infrastructural
support and are therefore only suited for closed environments.

• Inertial sensors: Accelerometers and various rotation and tilt sensors can be used to monitor
movement and thus, by integration, infer location information. As a relative location tracking
method, it is vulnerable to drifts and thus problematic for long-term recordings.

• WLAN: An increasing number of places are already equipped with WLAN access points,
including non-office environments like residential areas (e.g. [LFPR04] shows an exemplary
coverage map for Frankfurt) and public places (cf. [Fre]). WLAN access points form cells
of coverage that can be compared to GSM cells with regard to location sensing, but pro-
vide the possibility for client-based tracking of coordinates when multiple access points are
reachable.

• Bluetooth: As Bluetooth devices often have a limited radio range of 10 meters, only cell-
based location information in the form of spatial proximity can usually be inferred from
Bluetooth sensors.

Physical Physical aspects include a wide range of environmental parameters, but movement of the user
or device is a promising candidate for recognizing context. Our declared aim of unobtrusiveness
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and the long-term measurements prohibit the use of body-worn sensing devices like accelerome-
ters or microphones attached to various body parts (e.g. [LL01, LWJ+04]) unless they are com-
pletely integrated into clothing and are available ubiquitously. This hampers the direct monitoring
of physical aspects of the user context and necessitates the use of indirect ways: one example
is the status of the battery charger, i.e. if some device that is usually carried close to the user is
plugged into its charger or not. It can be used as a very rough estimate for the physical context of
the device. When connected to an outlet, it can be assumed to be immobile, while the converse
does not necessarily hold.

Social An important aspect of daily life is the social context, e.g. if other people are present in the
proximity of the user and if a conversation takes places. A variety of sensors can possibly be used
to infer social aspects:

• Spatial proximity sensors: Infrared, ultrasound or radio sensors can directly monitor the
spatial distance between people, but require additional body-worn devices.

• Location tracking: By correlating absolute location information of multiple people, spatial
proximity can be indirectly inferred.

• Video: Scene analysis based on video images can also be used to extract various social
aspects, but requires the installation of video cameras in the environment and can be prob-
lematic with regard to privacy issues. An alternative is to exploit cameras integrated into
mobile devices carried by the user, e.g. mobile phones or notebooks, but thorough scene
analysis is significantly more complicated when the camera is mobile.

• Audio: Microphones are broadly available in various devices and can be used to monitor
the auditory environment. This audio stream provides indicators for social aspects, like the
number of participants or possibly also the level of agitation in a conversation.

Technological The network context in this scenario encompasses connectivity and services available to
a user or device. It can be easily captured by gathering the list of reachable WLAN access points,
which describes both the general connectivity and the services available to the mobile user at each
time.

Activity A strong indicator for the user activity regarding the interaction with computer systems is
the currently active application, i.e. the application that is currently interacting with the user.
Additionally, activities like typing or talking could also be detected by utilizing the microphone
and watching for characteristic features like the number of peaks in a certain time frame.

These aspects of the user context are not complete, but capture parts that are considered important for
our chosen scenario of tracking the contexts of computer interactions of a single user. In the follow-
ing, a notebook computer is used for sampling the sensor values due to its mobility and broad range
of hardware interfaces. For geographical location tracking, the GSM cell, WLAN access points and
Bluetooth devices are monitored. GPS is not used because it is restricted to outdoor location sensing
and the intended application area concentrates on indoor activities. Specialized indoor location tracking
systems are also not applied because this would restrict the evaluation to a single, closed location. For
capturing physical aspects, only the status of the charger is available. Social aspects are captured by a
microphone and spatial proximity sensing via WLAN and Bluetooth; other people in range can — at
least in current office scenarios — often be detected by the Bluetooth-enabled devices they carry. An
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unusually high number of Bluetooth devices in close proximity, where “unusual” depends heavily on
the specific user, often indicates a meeting situation. The network context of the mobile device is repre-
sented by the list of reachable WLAN access points and the activity aspect by the active application or
foreground application window at the respective sample time. All of these aspects can be captured with
easily available, cheap sensing technology that also satisfies the size, weight and battery life require-
ments of typical mobile notebook users. Although a notebook computer is actually a counter-example
of pervasive computing technology, it was chosen for practical considerations; it is important to note that
all of the mentioned sensors could be easily integrated into other mobile devices like mobile phones or
PDAs or information appliances in the environment. Most of the sensors are already available in current
off-the-shelf smart phones, which could immediately be used as a direct replacement for the notebook
as a sensing device. The use of off-the-shelf technology is preferable to custom hardware developments
because of the broader scope, as shortly described in Section 4.4.

The most important aim of this research is still unobtrusiveness. Therefore, the data set was collected
by a background application running on the notebook and no user interaction was necessary. Although
in a practical application, a labeling of automatically learned contexts will be necessary, it is outside the
main focus of this thesis and is rather an issue of HCI than of context computing. This evaluation aims to
assess if context prediction is feasible in a completely unsupervised way. The predicted context classes
can then be used by arbitrary applications for reconfiguration and alerting purposes on the notebook,
offering direct benefits to the user. These applications are also out of the scope of this evaluation, we
simply assume that predicted contexts can be used to provide new services.

6.2 Data Set

The real-world data set used in this evaluation has been gathered continuously over a period of about
two months on a standard notebook computer which was used for daily work. No special considerations
were taken during the use of the notebook regarding context recognition. Therefore, the data set should
provide representative sensor data for the chosen scenario. A wide range of sensors was used, including:

• microphone

• active/foreground window

• plugged into charger

• WLAN

• GSM

Of these sensors, the respective features described in Section 5.4.1 are used, yielding 28 dimensions in
the feature vector after the feature extraction step. One of these dimensions is the time stamp indicating
when a sample was recorded. With a sampling rate of one sample in 30 seconds, about 90000 sample
vectors were collected, containing different situations in which the notebook was used. It should be noted
that the notebook was not running continuously, but was switched off regularly. Therefore, the data set
is not contiguous, but contains 38 time frames during which no samples are available. These areas are
easily recognizable because the sample vectors are time stamped and restarts of the application are also
marked in the log file. The whole data set is publicly available and can be downloaded from theContext

Recognition Databaseathttp://www.soft.uni-linz.ac.at/Research/Context_Database/.
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Figure 6.1: Selected features from the real-
world data set
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Figure 6.2: Detail view of the data set: 1 hour
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Figure 6.3: Detail view of the data set: 1 day
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Figure 6.4: Detail view of the data set: 1 week

In Fig. 6.1, a subset of the features contained in the whole data set is shown. The 8 plots depict those
feature values that are most likely to have an influence on context recognition:

• ActiveWindow represents the name of the currently active application window, abstracted to a
numerical id.

• Audio.Mean describes the mean value of the audio stream within a time window, i.e. the average
loudness.

• Audio.Peaks counts the number of peaks within the same time window.

• Power.Plugged is a binary feature and is 1 if the notebook was plugged into its charger.

• Wlan.Essid represents the name of the currently active ESSID, i.e. the WLAN network con-
nected to.

• Wlan.SignalLevel corresponds to the signal strength of the WLAN connection.

• Wlan.AccessPoint represents the MAC address of the WLAN access point currently connected
to.
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• Wlan.NumPeers counts the number of WLAN access points or devices in ad-hoc mode in range.

The other features are not shown because they either yield non-atomic values like the list of WLAN
devices in range or do not contribute significantly to context recognition like the 16 FFT coefficients
extracted from the microphone audio time series.
Table 6.1 shows the mean cross-correlations between all 27 features (excluding the time stamp), inter-
preted as numerical features, from lags 0. . .N whereN is the number of samples. The diagonal elements
are not equal to 1 because they describe the mean of the auto-correlation values for all lags, and only
the auto-correlation coefficient for lag 0 isρii (0) = 1 for the general case. In [BD02, p. 237], a test for
independence of two time series is described:

[...] the sample cross-correlationŝρ12(h), ˆρ12(k), h 6= k, of{Zt1} and{Zt2} are for large n

approximately independent and normally distributed with means0 and variances n−1. An

approximate test for independence can therefore be obtained by comparing the values of

| ˆρ12(h)| with 1,96n−
1/2 [...].

This is valid when{Zt1} or {Zt2} are pre-whitened time series where at least one of the two series is
white noise. However, since the heterogeneity of the feature space does not allow to easily fit a simple
ARMA model to each series, we can only apply this test — in a not completely exact way — to the
original series. The bounds forN = 87673 are in this case±0,00662, and it can be seen from Table 6.1
that all features but number 25 are, according to this test, correlated with each other. In [BD02, Example
7.3.1], this test on the original, unfiltered time series also suggested correlations, while testing the pre-
whitened series resulted in far less correlations. Another issue is that the time series are not numerical,
but are only interpreted as numerical for this test. For non-numerical feature types, the cross-correlation
function can not be computed in this standard way. Although we expect to find strong correlations
between many of the features, as they have all been extracted from the same environment within the
same contexts, the results of this test are arguable for heterogeneous feature vectors.

Although the data set itself does not contain initial transients because there was no set-up or training
phase at the beginning of the sample period, online context recognition will need to consider this issue.
For a closer inspection of the raw data, Figures 6.2, 6.3 and 6.4 show extracts of one hour, one day and
one week respectively. To avoid initial transients in the following evaluation, those extracts are from the
later parts of the data set. The considered hour lies is interval[60000;60120] of sample steps, the day in
[61000;63880] and the week within the sample steps[58000;78160].
To evaluate the stability of the context recognition with regard to variability in the data set, the whole
set has also been split into weeks according to the recorded time stamp. Table 6.2 lists the respective
number of samples contained in each of the 12 weeks to give an overview of both the size and the
consistency of the individual week data sets. As apparent, the sets are not uniform, and thus the analysis
of the individual sets needs to consider their differences in the results. In the following evaluation on the
context recognition part, the classification methods will be tested both on the whole data set and on the
individual weeks.

As this data set can only represent a single user in a number of situations, it is most probably not rep-
resentative for context recognition in general. When the public Context Recognition Database becomes
more widely recognized and standard data sets become established for benchmarking purposes, a better
evaluation will be possible. For the purpose of showing the feasibility of the approach presented in this
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Table 6.1: Cross-correlations between all features
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Week # Samples

0 4958
1 6451
2 14139
3 11595
4 11311
5 7713
6 2428
7 3477
8 2851
9 10057
10 11570
11 1123

Table 6.2: Number of samples in each week of the data set

thesis, a single data set is sufficient; we do currently not strive to optimize towards highest recognition
accuracy.
In the following, this data set will be used to evaluate some methods for context recognition and predic-
tion, more specifically for the classification and prediction steps as described in Chapter 4. Some of these
methods have been implemented as modules within the software framework described in Chapter 5,
while for others various external tools are used for this evaluation. Section 6.3 compares classification
methods for context recognition and Section 6.4 compares prediction methods for both continuous and
categorical time series prediction.

6.3 Context Recognition

In this section, the context recognition part of the developed architecture is evaluated. This includes
the feature extraction and classification steps and serves as the base for context prediction. For reasons
described earlier in the qualitative comparison of classification algorithms in Section 4.6.3, the standard
classification methods k-means and Kohonen SOM are compared with the enhanced LLGNG algorithm
implemented within the framework. Both standard algorithms are unsupervised classification methods
successfully used in a wide range of application areas — including context recognition [LL01] — and
minimize the same cost function as LLGNG [DWM02]. For the comparison, the Euclidean distance
metric has been used for all algorithms wherever applicable. All experiments have been performed on a
P4 CPU with 2.4 GHz and 1 GB RIMM memory for comparability of run-time.
Both k-means and SOM are used in a batch training mode and are thus not susceptible to initial tran-
sients, while LLGNG suffers from such effects due to its online mode. In general, the results of context
recognition in this evaluation could be improved. However, keeping the major aim of unobtrusiveness
in mind, it is impossible to even define a good quality measure, because there is no labeled data for
comparing the results of the classification methods with known values. For k-means and SOM, the data
set has been pre-processed to transform all non-numerical into numerical input dimension by assigning
one input dimension for each possible feature value, i.e. the one-of-C method. E.g. for the WLAN ES-
SID, the single, nominal dimension is split into four binary dimensions, where, at each time step, only
one of those dimensions is set to 1 and all others must be set to 0. This transformation yields a 198
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dimensional input space with a large number of binary inputs. All dimensions are further normalized to
[0;1], as recommended by standard literature on clustering like [Nel01, p. 143]. Since the implementa-
tions of the distance metrics specific to each feature (cf. Section 4.5) are also normalized to[0;1], the
overall classification error is assumed to be comparable even if the number of input dimensions is differ-
ent. Although categorical data (e.g. the ESSID identifiers) are not mapped directly to numerical values,
which would impose completely different — and most of the time erroneous — semantics on the data
dimensions, some properties of the data are not taken into account and could therefore lead to a loss in
classification accuracy. E.g. the binary input dimensions are not bound to assume only the values 0 and
1 in the internal structures of the respective clustering methods, but can assume values in between that
have no meaning in the feature space. However, when a classification method can not deal directly with
heterogeneous input data, the only option is to code it and deal with the possible loss in classification
accuracy.

6.3.1 Quality Measure

As a quality measure for determining the classification quality, it is desirable to find one as simple as
possible so as to be applicable to a wide range of different methods. Because the problem necessitates
the use of unsupervised clustering as already mentioned in the requirements on the classification step in
Section 4.6.2, there is no known solution to compare with. Therefore, it is not possible to find a measure
for the “correctness” of a context classification for the general case, independent of the application area.
Instead, the quality measure should capture how well the computed clusters represent the input prob-
ability distribution. Experimenting with two possible quality measures which were used in [DWM02]
revealed that both are unable to select a plausible number of clusters for k-means clustering with this
data set, and subsequently they are not used for these experiments.
Within the scope of this evaluation, we define thefinal classification erroras theaverage distance

between each data point and its respective best matching cluster after training has been completed,
which is similar to the cost function minimized by k-means (cf. Section 4.6.3). This is an universal
criterion suitable for evaluating the classification quality of arbitrary unsupervised clustering algorithms,
and it is already well-defined and used in different implementations like the SOM Toolbox for Matlab;
lower values for the classification error represent a better adaptation to the feature values and thus a
more accurate classification.
In addition to this general quality measure with the mentioned shortcomings, the plausibility of the
classification results will also be analyzed briefly. This allows a more qualitative assessment of the
context classification results.

6.3.2 K-Means

K-means clustering divides a given data set intok clusters by minimizing the sum of distances between
the data points and cluster centers, whereask has to be pre-determined. Thus, k-means actually does
not fulfill one of our requirements for classification methods listed in Section 4.6.2, namely the need
for variable topology. It is nonetheless included in this comparison because it is widely used in many
application areas. There exist some variants of k-means, e.g. Fuzzy C-Means (FCM) or online versions
which would fulfill the other requirements but differ only slightly in the principal methodology. Since the
number of clusters needs to be pre-determined, the k-means clustering implementation in the Statistics
Toolbox for Matlab was used iteratively fork = 2. . .40 to determine the optimal number of clusters,
maximizing the following simple function:
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Figure 6.5: K-means classification quality depending on the number of clustersk (two different test
runs)

q =
1/k∑k

i=1 ∑k
j=1Di j

1/(n−1)∑n
l=1 (Bl −E(B))2

wherek is the number of clusters,Di j denotes the distances between cluster prototypesi and j andBl

denotes the distances of thel th input vector to its respective best matching cluster. It computes the mean
distance of clusters to each other, normalized by the variance of distances between input vectors and
their assigned cluster, or in other words, the distance of clusters in relation to their compactness.
The value of this criterion depending on the number of clustersk can be seen in Fig. 6.5 and shows
quite clearly a peak fork = 6 in the first run andk = 4 for the second run. It is well known that k-means
clustering is highly dependent on the (random) initialization of its cluster prototypes. For the detailed
evaluation of k-means, 6 clusters are used to achieve a lower final classification error. Clustering the
whole data set to 6 clusters took 84 seconds on our reference computer with a final classification error
of 0,7451.
In Fig. 6.6, the assigned clusters are depicted for each time step in the initial feature data set. Figures 6.7,
6.8 and 6.9 present the assignment of clusters for the extracted time frames of one hour, one day and
one week respectively. In the feature values depicted in Fig. 6.2, the active window and audio peaks
features show changes shortly before time step 60040 and the active window, power and WLAN ESSID
features show changes around time step 60060. Although the cluster trajectory for one hour shows
plausible context class transitions at those times, these transitions are only temporary and the trajectory
immediately returns to the previous context, which is not justified by the feature values. The trajectories
for one day and one week show sensitivity to the power and WLAN ESSID features, but seem unstable
and oscillate quickly between contexts. Without labeled data to compare with, a rigorous analysis of the
consistence of context classes with real-world situations can not be performed. However, for a data set
of 2 months resulting in 6 context classes, it is expected that the respective contexts are rather high-level,
which is not supported by the oscillations in the trajectories computed by k-means. Examples for such
oscillations can be seen in Fig. 6.8 between time steps 62000 and 62500.
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Figure 6.6: Cluster trajectory computed by k-
means clustering
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Figure 6.7: Detail view of the k-means com-
puted trajectory: 1 hour
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Figure 6.8: Detail view of the k-means com-
puted trajectory: 1 day
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Figure 6.9: Detail view of the k-means com-
puted trajectory: 1 week

In addition to the whole data set, k-means is also applied to the feature values of the 12 individual weeks.
This allows to assess the stability of k-means with regard to different data sets. As k-means is sensitive
to its random initialization, 5 test runs are performed and the mean classification error of these test runs
is taken for each of the 12 weeks. Table 6.3 lists the classification errors for each trial run, the mean and
variance for each week and the overall mean and variance of the mean classification errors of each week.
The overall mean classification error of 0,6469 is slightly better than the error achieved for the whole
data set at once, suggesting that k-means is better suited for smaller data sets; increasing the number of
clusters for the larger data set does not improve the result quality as evident from Fig. 6.5.

K-means clustering in this form is infeasible for embedded systems due to the enormous computational
power necessary to optimize the number of clusters; determining the number of clusters for this test case
took over 2 hours with 5 computers similar to our reference machine being used in parallel.
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Week Classification error Mean Variance
1 2 3 4 5 error of errors

0 0,9865 0,9865 1,0542 1,0209 1,0383 1,0173 9,29E-4
1 0,6869 0,6869 0,6869 0,6869 0,7361 0,6967 4,84E-4
2 0,5919 0,5905 0,5919 0,5919 0,5905 0,5913 5,58E-7
3 0,7907 0,5765 0,5770 0,7878 0,5770 0,6618 1,35E-2
4 0,3283 0,3364 0,3364 0,3364 0,3364 0,3348 1,28E-5
5 0,1784 0,1784 0,1784 0,1784 0,1784 0,1784 0
6 0,4906 0,4706 0,5167 0,4028 0,4745 0,4711 1,80E-3
7 0,8720 0,8095 0,8560 0,8092 0,8125 0,8318 8,96E-4
8 0,9404 1,0499 0,9404 1,0619 1,0619 1,0109 4,20E-3
9 0,7111 0,7055 0,7266 0,7055 0,7231 0,7144 9,83E-5
10 0,8209 0,8090 0,7619 0,8175 0,8417 0,8102 8,74E-4
11 0,5229 0,3639 0,3639 0,4452 0,5229 0,4438 6,30E-3

Mean 0,6469
Variance 0,0664

Table 6.3: K-means classification errors for each week of the data set

0

0.66

1.32
U−matrix

Figure 6.10: SOM u-matrix showing the distances between clusters and hits for the clusters
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6.3.3 Kohonen SOM

The Kohonen SOM is, in contrast to k-means, a soft clustering approach: each input sample is assigned
to each cluster with a certain degree of membership. For the purpose of this comparison, this can easily
be reduced to hard clustering by searching for the so-called “best matching unit”, which is then assumed
to be the context class for the respective time step. The following evaluations were performed with
the specialized SOM Toolbox for Matlab developed by the Laboratory of Computer and Information
Science at Helsinki University of Technology [VHAP99] because of its flexibility and simple means of
visualization.
Training a new SOM with the whole data set took 690 seconds and results in a final classification error of
0,5659. The SOM grid is automatically set to 71x21 clusters with a heuristics embedded in the toolbox.
There is no need to change the defaults, because the u-matrix, shown in Fig. 6.10, looks plausible. For
an SOM, its u-matrix is defined as the unified distance matrix, where each elementui, j is computed as
the distance between the map unitsi and j. Thus, it visualizes the distances between adjacent cluster
prototypes and can be used to analyze if the input space is quantized evenly. It is probably the most
popular method for displaying the structure of SOMs. The u-matrix for this SOM shows some clearly
visible classification of the input space, as the clusters are not spread evenly. In Fig. 6.10, yellow to red
colored elements represent areas with larger distances and the sizes of the black dots, which visualize
the number of hits on the respective best matching units, are also not evenly distributed. In this case, the
u-matrix indicates around 4 to 8 larger areas, which seems reasonable when compared to the 6 clusters
found by the k-means method and which can be seen as some form of meta clusters. Although the final
classification error is lower than for k-means clustering, this is not surprising because of the significantly
larger number of cluster prototypes that are available for mapping the input space. It is currently unclear
if meta clusters could be derived in an unsupervised way from a SOM structure; the u-matrix is typically
used for visualizing a data set to allow human inspection. The large number of clusters formed by the
SOM could not be used for directly representing high-level context, a second classification step would
be necessary for the labeling, as in [Lae01].
The clusters assigned to the feature values for each time step are shown in Fig. 6.11 as the numbers
of respective best matching units. For the one hour extract shown in Fig. 6.12, the trajectory is also
unstable in the earlier part, but seems plausible starting from the transition shortly before time step
60060. In the period between 60040 and 60060, where the active window and audio peaks features in
Fig. 6.2 exhibit a visible change, the trajectory is stable and a distinct cluster has been assigned. After
60060, where the power and WLAN ESSID features change, a different cluster is selected. On the other
hand, the trajectories in the extracts of one day and one week, shown in Figures 6.13 and 6.14, show
oscillating behaviour at this level of detail. Without a second step of clustering to exploit some form of
meta clusters formed by the SOM, the resulting cluster trajectories seem unusable for context prediction
on an abstract level. Additionally, the trajectory of the whole data set presented in Fig. 6.11 shows signs
of unfavorable separation of clusters into areas in the input space around time step 50000: the apparent
switch to a completely separate region of cluster prototypes is not supported by the visualization of the
feature values. This effect should not be confused with catastrophic interference (cf. [Ham01]), where
the network forgets older patterns and which can only occur in an online operation but not in the batch
training approach used here. A change to different clusters around the time step 50000 is also visible
in the k-means trajectory in Fig. 6.6, but it is not as drastic as for the SOM. This is especially bad
for context prediction, where a model of the previous data will lead to erroneous forecasts when such
sudden changes occur. A stable representation of context classes is of uttermost importance to achieve
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Figure 6.11: Cluster trajectory computed by
the SOM
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Figure 6.12: Detail view of the SOM computed
trajectory: 1 hour
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Figure 6.13: Detail view of the SOM computed
trajectory: 1 day
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Figure 6.14: Detail view of the SOM computed
trajectory: 1 week

usable results in prediction.
In the same way as done for k-means, Table 6.4 lists the SOM classification errors for the individ-
ual weeks. By also performing multiple test runs, it turned out that the SOM produces stable results
for each of the individual weeks and that the classification errors are equal for consecutive test runs.
Therefore, an averaging over 5 test runs is not necessary for the SOM. The mean classification error of
0,1342 is significantly lower than the error achieved for the whole data set, which is expected given the
abrupt change in cluster regions visible in Fig. 6.11. Like k-means, the SOM also seems to cope better
with smaller data sets for context recognition purposes and therefore seems unsuitable for continuous
classification with consequently arbitrarily large data sets.

The heterogeneous variation of the SOM [NB01] might perform better on our data set, because the
mapping of categorical data to higher-dimensional numerical data would not be necessary, reducing the
number of input dimensions. Unfortunately, no implementation of this algorithm was available and it
was infeasible to implement it in Matlab within the scope of this evaluation. It was also not possible to
easily work with the meta clusters visible in the u-matrix, which might also lead to more stable results.
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Week Classification error

0 0,2443
1 0,2276
2 0,1838
3 0,1953
4 0,0715
5 0,0202
6 0,0942
7 0,0971
8 0,2708
9 0,1090
10 0,0671
11 0,0292

Mean 0,1342
Variance 0,0074

Table 6.4: SOM classification errors for each week of the data set

Meta Number Number Average Variance
cluster of clusters of hits distance of distances

1 2 1489 0,003989 0,000166
2 1 34229 0,002864 0,000138
3 4 10422 0,016849 0,000285
7 3 735 0,083949 0,008128
8 7 9235 0,002995 0,000125
9 3 173 0,005163 0,000422
10 5 580 0,040609 0,008482
11 6 5289 0,015166 0,000255
12 72 25521 0,005366 0,000201

Table 6.5: Meta clusters constructed by the extended LLGNG

6.3.4 Extended LLGNG

Prior to training the extended LLGNG algorithm with this test data set, a simulated annealing proce-
dure was used to optimize some of its static parameters that were explained in more detail in Sec-
tion 4.6.4. However, the optimization does not significantly improve the classification error, suggesting
stability against changes in the initial conditions or parameter sets and supporting the findings reported
in [DWM02]. The final parameter setting wasλ = 10 (a new unit is inserted after this number of input
samples),ϑdelY = 0,5 (an unit is only deleted is it is older than this, i.e. their youth must be lower
than this threshold),ϑdel = 0,5 (an unit is only deleted if its deletion criterionKdel is is lower than this
threshold),ϑdelBL = 0,15 (an unit is only deleted if its quality measure for leaningBL is lower than
this threshold),ϑage = 30 (edges that are older than this threshold are removed),TS = 6, TL = 170,
TY = 50,Tϑ = 55 (the time constants for decreasing the short-term and long-term error counters, the age
of the best-matching unit and the insertion threshold, respectively),ϑins = 0,02 (the insertion tolerance
used for determining the quality measure for insertionBI ), ϑi

L = 0,0005,ηb = 0,15, ηn = 0,01 (the
adaptation threshold, learning rate of the winner and learning rate of the neighbors, respectively, used



106 CHAPTER 6. EVALUATION

0 1 2 3 4 5 6 7 8 9
x 104

0

2

4

6

8

10

12

Time step

As
sig

ne
d 

m
et

a 
clu

st
er

Figure 6.15: Cluster trajectory computed by
the extended LLGNG
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Figure 6.16: Detail view of the extended LL-
GNG computed trajectory: 1 hour
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Figure 6.17: Detail view of the extended LL-
GNG computed trajectory: 1 day
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Figure 6.18: Detail view of the extended LL-
GNG computed trajectory: 1 week

for determining the learning rateηi), ηϑ = 0,2 (the learning rate of the adaptive insertion threshold)
and a minimum learning rate ofηmin = 0,2. For a detailed discussion of these parameters, we refer
to [Ham01].
One-pass training with the whole data set took only 474 seconds, produces 103 clusters composing 9
meta clusters and achieves a final classification error of only 0,0069. This means that the input data
distribution is well approximated by the automatically found clusters, even with the inherent noise in
our real-world data set and significantly less clusters than used by the SOM (71·21= 1491). Because
GNG/LLGNG are not restricted to a user-defined, fixed number of dimensions in the neighborhood
topology like the SOM, their internal structure can not be easily visualized. Instead, Table 6.5 shows
the meta clusters constructed during training, with the number of hits and the mean and variance of
the distances of all assigned data samples to the respective meta cluster. With respect to the average
distances, the respective variances indicate a small intra-cluster variance and thus good separation of
meta clusters. For a quantitative assessment of this separation, the inter-cluster variances would need to
be compared with the intra-cluster variances, but the former are currently not available as no sensible
way of computing them has been found.
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Fig. 6.15 shows the best matching meta clusters for each time step; the meta clusters are a higher-level
concept than clusters and are thus suited better as abstract context identifiers. The hour extract of the
trajectory shown in Fig. 6.16 shows that the change around time step 60060 is detected, while the change
shortly before 60040 is ignored by LLGNG. This is supported by the fact that more features changed
simultaneously at the later event. However, later changes in the trajectory before and after time step
60080 are not supported by significant changes of the features shown in Fig. 6.2, which suggests that the
non-atomic features that are not shown exhibited changes. Fig. 6.17 shows that the cluster trajectory of
the day extract looks plausible when compared with the respective feature values from Fig. 6.3, although
it seems to be mostly sensitive to the WLAN ESSID in this time frame. The same behavior is visible in
the week extract in Fig. 6.18, but within this time frame other features like the active window also seem
to have an influence. When comparing the trajectories computed by k-means, SOM and the extended
LLGNG variant, the latter ones are more stable, showing fewer oscillations, with the notable exception
of the time frame between time steps 64000 and 70000 in Fig. 6.18, where the LLGNG trajectory also
shows oscillating behavior.
It should be noted that, unlike SOM and k-means, the extended LLGNG is used in online mode, which
is far more challenging. Without any further changes, the algorithm can immediately be used for con-
tinuous learning over arbitrary periods of time. K-means and SOM both had to be trained to produce
the above results, with each sample being presented numerous times for training. The extended LL-
GNG had only a single pass over the whole data set and still achieves a significantly lower classification
error and more stable results. One suspected reason for this success is that our extensions that enable
LLGNG to deal directly with heterogeneous data indeed lead to higher classification quality due to the
lower-dimensional input space and due to the preservation of the semantics of all feature dimensions.
The fact that LLGNG is used in online mode with a single pass over the respective data sets is also
the suspected reason for its comparatively poor results on the individual data sets. Table 6.6 shows the
respective final classification errors for each of the 12 weeks and the mean error of 0,1178, which is
larger than the final classification error achieved on the whole data set by a factor of approximately 17.
Without multiple epochs, LLGNG is presented with only a small number of training samples, e.g. 1123
for week 11, which seems to hinder its performance. However, the mean classification error and variance
over all individual week results are still lower than those of k-means and SOM, even if the difference is
not as pronounced as for the results on the whole data set.

In the following, the context class trajectory computed by LLGNG and shown above in Fig. 6.15 will
be used for further investigations. There are two reasons for preferring it over the k-means and SOM
results within the scope of this evaluation: Most importantly, the results were produced in a completely
unsupervised and online way, which fulfills the core aims of this research. Additionally, the trajectory is
more stable and thus promises slightly better results for context prediction.

6.4 Context Prediction

After showing the feasibility of online, unsupervised context recognition with a single classification step
and limited resources in the last section, the resulting context class data can be used as the base for an
evaluation of the context prediction step. To shortly recapitulate the interface between the classification
and the prediction steps, the output of classification is am-dimensional vector with degrees of mem-
bership for each context class. Therefore, the prediction step builds upon am-dimensional trajectory of
numerical values in the interval[0;1]. In this evaluation, there are 87673 class vectors with 9 dimensions
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Week Classification error

0 0,0249
1 0,1151
2 0,1559
3 0,0104
4 0,1860
5 0,0474
6 0,1376
7 0,1708
8 0,0203
9 0,1741
10 0,1853
11 0,1857

Mean 0,1178
Variance 0,0047

Table 6.6: LLGNG classification errors for each week of the data set

each, which correspond to the meta clusters formed by the extended LLGNG algorithm. The degree of
membership of each of the meta clusters to a feature vector is defined as the distance of the nearest
cluster within the respective meta cluster. As in the evaluation of classification algorithms, this section
builds upon a single data set and can therefore not provide a general assessment of various methods for
arbitrary application areas. In the following, a number of prediction methods will be used on the present
data to predict future context classes and therefore evaluate the possibilities for context prediction in
this scenario. Before the actual prediction is performed, a quality criterion for measuring the prediction
accuracy in a quantitative way is defined and the time series is subjected to a brief analysis.

6.4.1 Quality Measure

For the classification step, the correct classification results were not even known in the offline, batch
training mode that could be applied in the above section. In contrast, for the prediction step known
results to compare with are available, at least for the batch mode used in this evaluation. The aim is to
predict the future development of the context class trajectories; when using only a part of the known time
series for training the prediction methods, which is usually called thetraining set, the remaining part,
usually calledtest set, can be used for comparing the computed prediction with the real development
of the trajectories. This way, prediction can actually become a supervised approach (but without human
supervision).
For supervised approaches, it is possible to find better quality measures than for unsupervised ones. In
the following, both options for time series prediction discussed in Section 4.8.3 will be evaluated, but
the applied quality measures differ. For continuous time series prediction, the well-known Root Mean
Squared Error (RMSE) is used for assessing the result quality by comparing the true time series from
the test set with the series predicted by the specific methods. For categorical time series prediction, a
loss function known as 0/1 loss is applied, which basically counts the number of erroneous predictions.
These quality measures are explained in more detail in the respective sections.
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Figure 6.19: Periodogram of the aggregated,
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6.4.2 Analysis of the Data Set

For an initial assessment of the context class time series that should be predicted, a few statistical
methods are appropriate. Continuous time series prediction methods produce richer data than categorical
prediction methods, because with continuous methods, the detailed developments of all context class
memberships can be predicted, while categorical methods predict the context class trajectory of best
matching contexts. For comparability of continuous with categorical prediction methods, the categorical
time series needs to be used and is subsequently the subject of this brief initial analysis of the time series
data.
A direct visualization of the categorical time series used for the following considerations is given in
Fig. 6.15. Visual inspection suggests that the series contains periodic patterns which could be exploited
for prediction purposes. The periodogram and cumulative periodogram are established visualization
techniques that show the period of cycles in a time series. Figures 6.19 and 6.20 show the periodogram
and cumulative periodogram, respectively, and it can be observed that, contrary to the expectation, no
significant periods are evident. Another common approach to time series inspection are the (sample)
autocorrelation function (ACF) and (sample) partial autocorrelation function (PACF), shown for this
time series in Figures 6.21 and 6.22, each for a maximum lag of up to 50. The slowly decaying positive
ACF suggests the application of a differencing operator before fitting a simple ARMA model (cf. [BD02,
p. 181f]), which will be evaluated below in Section 6.4.3. More generally, this characteristic shape
suggests a long-term dependency within the time series. The shape of the PACF suggests a first- or
second-order auto-regressive component, often denoted as AR(1) or AR(2), respectively, for the original
time series.
On a more qualitative level, a few possible issues for this time series can be identified from knowledge
of the problem domain and the experimental setup. As the notebook recorded sensor data in different
contexts depending partially on the time of the day, we would expect a few periodic patterns with
different period lengths to be contained in the data. On the other hand, linear or higher order trends are
not expected to be contained in the data. So-calledagingeffects could, in this scenario with the chosen
time frame for the whole experiment, not be caused by deterioration. It is also unlikely that learning on
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Figure 6.21: Autocorrelation function (ACF)
for the categorical time series of context
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Figure 6.22: Partial autocorrelation function
(PACF) for the categorical time series of con-
text classes

the part of the user, another possible cause for aging effects, will have noticeable impact within the rather
short period of two months, in which the user has attended no special training. However, it is nonetheless
expected to be a difficult problem for time series prediction methods, because the behavior of a single
user is often unpredictable without detailed insight into his intents or emotional states. In contrast to
predicting the behavior of a large number of people, which is e.g. frequently performed by insurance
companies, the law of large numbers does not apply to this case. When observing a sufficiently-sized
population, random effects tend to compensate each other. For context prediction, where a single user
is in the focus of the time series data, random changes in behavioral patterns are rather the rule than the
exception.

For continuous time series prediction, a detailed inspection of one specific context class trajectory can
give more insight into the suitability of the compared methods. The predicted categorical time series,
which is necessary for comparison with categorical prediction methods, will be constructed by aggregat-
ing all individually predicted context class trajectories, taking the respective best matching, i.e. highest
ranked, context for each time step. From the nine possible time series that are available, i.e. the nine
distinct context class trajectories, time series number two is selected for a more detailed analysis. The
reason for this selection, which is based on a visual inspection of all nine trajectories, is that the second
trajectory features the largest variability and shows periodic patterns. This makes it challenging and thus
interesting for continuous time series prediction. As apparent from Fig. 6.23, it includes periodic pat-
terns in the beginning and a pattern change in the end and the degree of membership of the associated
second context class varies from lower than 0,5 to 1. Other class trajectories do not show such clear
patterns or are noticeably correlated. To cope with the size of the data set and speed up training time,
only every hundredth value was included in the time series, effectively reducing the temporal resolution
by a factor of 100. This should actually improve long-term prediction accuracy, as a single prediction
step in this lower-resolution time series accounts to hundred steps in the original one.
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Figure 6.23: Trajectory of the second context class

6.4.3 Continuous Time Series

Continuous time series prediction can be seen as a mapping of multiple input values to one or multiple
output values and thus the aim is to find a model for this mapping. Three methods seem particularly
well suited for this purpose: ARMA, as a specialized time series prediction method, and the general
backpropagation Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) as universal func-
tion approximators. While SVM is only suited for single-step prediction, the ARMA and MLP methods
can deal directly with multi-step prediction, though with different approaches. Independently of single-
or multi-step prediction, the same quality measure can be applied, as the aim is for both to predict the
trajectory as closely as possible. The RMSE has been widely established as a standard error measure
not only for time series prediction and is defined as:

e=

√
1
n

n

∑
i=1

(yi −yi)
2

whereyi andyi are the true and predicted values of the time series at time stepi.

It should be noted that all three methods for continuous time series prediction evaluated in this chapter
are actually batch training approaches and can not be used easily in an online mode. Thus, they violate
the requirement of online learning as explained in Section 4.8.1.

6.4.3.1 ARMA

For evaluating ARMA models, the specialized ITSM2000 software package, which is bundled
with [BD02], has been used. Contrary to the expectation based on the shape of the sample ACF as
shown in Fig. 6.21, only differencing the time series does not yield any usable results, as evident in
Fig. 6.24. The maximum likelihood evaluation based on the AICC criterion (cf. [BD02]) found, after
differencing the time series once, an ARMA-2-2 model as best fit, but the prediction of 50 steps start-
ing from time step 200 suggests that the model does not fit the present time series. In this section, an
ARMA- p-q model denotes a model with AR(p) and MA(q) components, i.e. with auto-regressive terms
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Figure 6.24: ARMA forecast of the second context class trajectory with differencing

Prediction number Start of forecast RMSE
(time step)

1 50 0,0347
2 100 0,0479
3 150 0,1032
4 200 0,0608

Mean 0,0617

Table 6.7: RMSE values of ARMA forecasts

of order p and moving average terms of orderq. Applying a seasonal fit with a lag of 55 before fit-
ting an ARMA model yields significantly better results. All forecasts shown in Fig. 6.25 were created
with a seasonal correction with that lag and the ARMA-1-1 model found by autofitting, i.e. doing an
exhaustive search for models between 0-0 and 5-5 for the best performing one, rated again by the AICC
criterion. As the data series with reduced resolution is still manageable, the grid search approach is cho-
sen over heuristics to achieve the best possible model and eliminate any possibility for local minima in
optimization procedures. The first three predictions of 50 steps each, starting at time steps 50, 100 and
150 respectively, show a reasonable match between the true and the predicted trajectories. Around time
step 200, a change in the periodicity of the trajectory occurred, which could naturally not be captured by
the simple ARMA model as shown in the fourth prediction in Fig. 6.25. The respective RMSE values
for each of the four predictions are given in Table 6.7.
The remaining issue is to find the lag for the seasonal fit. During this evaluation, the lag of 55 was found
by visual inspection and trial-and-error, which is the typical [BD02, p. 188]:

Trend and seasonality are usually detected by inspecting the graph of the (possibly trans-

formed) series.

However, this approach is not possible for estimating the model automatically in an unsupervised way.
Exhaustively trying all possible lags with all possible ARMA models might be an option for batch
training and in environments where computational resources or computing time are not an issue, but it
is inadequate for embedded systems. An estimation if there are seasonal components in the time series
can be extracted from the ACF [BD02, p. 188]:
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Figure 6.25: ARMA forecast of the second context class trajectory with seasonal correction

However, they [= trend and seasonality] are also characterized by autocorrelation func-

tions that are slowly decaying and nearly periodic, respectively.

Not only the fact that seasonal components are present, but also suitable lag values for a seasonal cor-
rection can be indicated by the ACF, which should show local peaks for those lags that describe seasonal
aspects of the respective time series. Fig. 6.26 shows the autocovariance function (ACVF) for the consid-
ered trajectory of the second context class with a peak near lag 5000, although it is not as pronounced as
in the autocovariances of the categorical context class trajectory of the respective best matching classes
shown in Fig. 6.27 (which includes larger lags than computed in the initial analysis in Section 6.4.2).
This peak seems plausible when compared with the lag of 55 — at a resolution reduced by factor 100 and
thus equivalent to a lag of 5500 in the original time series — and could be used for an automatic fitting
of seasonal correction. However, a specific method to derive seasonal lags from a possibly incrementally
computed ACF is not further investigated within the scope of this evaluation.
For a better comparability with approaches based on categorical time series forecast, ARMA models
of all 9 context class time series are created. They are also constructed with a seasonal fit with lag
55, but with different orders for the AR and MA terms, which were found by autofitting. On the 9
distinct models, 50-step forecasts are computed starting from time steps 50 and 150, because those
were respectively the most successful and least successful for the second class trajectory with regard
to the RMSE, as apparent from Table 6.7. The resulting forecasts are then aggregated by searching for
the respective maximum degree of membership for each time step and taking the context class that is
attributed with this maximum activation as (categorical) value for the time step. Fig. 6.28 shows that the
true (blue) and predicted (green) time series differ only slightly. The respective 0/1 loss values for the
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Figure 6.26: ACVF of the second context class
trajectory
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Figure 6.27: ACVF of the aggregated, categor-
ical context class trajectory
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Figure 6.28: Aggregated ARMA forecast showing the categorical cluster trajectory for 50 time steps,
starting from step 50 (a) and 150 (b)

50-step predictions, explained in more detail in Section 6.4.4, are 0,06 starting from time step 50 and
0,04 starting from time step 150.

6.4.3.2 Backpropagation MLP

For evaluating the Multi-Layer Perceptron trained by backpropagation, the same time series is used as
with the ARMA model for better comparability. Due to the resolution reduction by a factor of 100,
roughly 900 data points of this time series were available. Out of these, the first 600 samples are used as
the training set and the samples in the interval[601;800] are used as the test set, With this partitioning,
2/3 of the whole data set should provide a sufficient number of samples for training the network, while
the remaining test set is still large enough to detect possible effects of overfitting. In practice, training
set sizes between 2/3 and 4/5 of the whole set are used in different application areas and haven proven
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Hidden units MSE [10−3] Mean

2 50,4 14,7 16,1 12,5 23,8 23,5
3 9,6 11,0 12,5 25,1 10,6 13,8
4 10,6 8,7 21,2 22,7 19,6 16,6
5 9,3 10,5 30,6 24,7 25,2 20,1
10 18,6 41,7 46,5 25,3 37,9 34,0
15 52,2 51,5 43,0 24,5 42,0 42,6
20 43,8 37,4 44,5 36,3 21,5 36,7
25 43,8 50,2 36,4 53,6 60,0 48,8
30 36,8 54,9 62,9 47,1 61,9 52,7
40 64,0 74,8 52,4 58,7 68,4 63,7
50 47,6 53,5 63,6 37,4 69,6 54,3
70 88,4 72,2 70,9 77,8 62,9 74,4
100 87,3 97,7 89,0 89,4 101,3 92,9

Table 6.8: MLP training error depending on the number of hidden units

to be appropriate. The following evaluation was performed with the Neural Network Toolbox in Matlab
by interactive construction of the network models and batch training.
The MLP is evaluated under the same conditions as ARMA to achieve comparability of the approaches,
but, as an MLP is a general model for mappings from input to output vectors and not a specialized
time series prediction technique, its applications is different. By applying a function of sigmoid type
to the hidden units (the “tansig” function in the Neural Network Toolbox) and a linear function to
the output units (“purelin”), an MLP becomes a general function approximator [HSW89]. However,
such an universal function approximator only maps a multi-dimensional, numerical input vector to a
multi-dimensional, numerical output vector. To apply it to time series forecast, the time series values
must be transformed from time to state space via a sliding window approach, sometimes also called
sliding window method[Die02]. When starting from a sample at time stept in the time series, sam-
ples in the past oft, i.e. lower indices, can be taken as the input vector and samples in the future
of t, i.e. higher indices, can be taken as the corresponding output vector that is necessary for train-
ing of supervised methods. As apparent in Fig. 6.23 and already discovered with the seasonal fit of
the ARMA model, the periodicity of the time series has a period length of more than 50 time steps
with reduced resolution. If the MLP is to discover this periodicity, it is thus necessary to use an in-
put vector that covers a larger time window to include at least one period in each input vector. Ad-
ditionally, a MLP can produce multi-dimensional output, which allows to implement multi-step pre-
diction in a direct, non-iterative manner. As a consequence, the sets of indices for input and output
vector have been chosen as{−70,−60,−50,−40,−30,−20,−15,−10,−7,−5,−4,−3,−2,−1,0} and
{1,5,10,15,20,25,30,35,40,45,50} respectively. For the input vector, the more recent history is in-
cluded in more detail, while the indices for the output vector are equally spaced. All index values are
relative to the current sample, which leads to the actual time window sliding over the samples[71;600]
for the training and[671;750] for the test sets. In this setting, there are 530 combinations of input and
corresponding output vectors in the training set and 80 in the test set.
MLP type networks require their structure to be defined a priori as only the parameters but not the struc-
ture can be determined by a training procedure. A standard MLP has an input layer, a hidden layer and
an output layer. For the input and output layers, the number of neurons is fixed by the respective number
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of dimensions in the input and output vectors: in this setting 15 input and 11 output neurons. In [TF93],
it has been suggested to use the same number of input units as there are AR terms in the corresponding
ARMA model. However, since this would not consider the seasonal fit that is required for this data set,
a larger number of inputs is necessary. An appropriate number of neurons in the hidden layer is often
found by trial-and-error, e.g. also in [TF93]. Within the scope of this evaluation, an appropriate range of
networks with different configurations are constructed and compared. The actual training is performed
over 500 epochs each, where one epoch is defined as the presentation of all training samples to the net-
work, with five test runs for each network topology. For assessing the suitability of a specific network
configuration, the mean squared error (MSE) over the whole training set is used as a quality measure.
As can be seen from Fig. 6.29, 500 epochs is — for this learning problem — an appropriate number, as
the MSE does not further decrease after that. Table 6.8 shows the results of this network size selection.
Because different training runs produce noticeably different results, the mean error over 5 test runs is
minimized for selecting the best network size, resulting in a hidden layer size of 3 neurons. One specific
training instance of this network structure with a MSE of 0,0106 was then used for cross-validation
with the test set and yields a MSE of 0,0055 or 0,074 RMSE. When considering only the first output
dimension, i.e. a prediction of the sample at one time step ahead, the MSE declines to 0,0028 or 0,053
RMSE. As indicated by the RMSE in comparison to the results of ARMA prediction, the MLP is in this
form incapable of estimating the future context class trajectory in the test set. Fig. 6.30 shows the real
trajectory in blue and the trajectory predicted by the MLP instance in single-step mode in green. At least
for this scenario, the MLP approach does not seem suitable for context prediction due to its prediction
accuracy, aside from the fact that it is also a batch training approach that is not easily applicable in an
online way. This assessment is supported by the aggregation of the MLP predictions of all 9 context
trajectories, each of which is generated by a distinct MLP with 3 hidden units and trained the same way
as described above. For the MLP, 50 single-step predictions starting from time step 150 are performed
due to the definition of the input vectors, which require time series values at 60 and 70 steps before the
current one. Thus, starting at time step 50 would not allow to extract complete input vectors for training
the network. Fig. 6.31a shows clearly that the predicted categorical time series differs completely from
the real time series and the 0/1 loss is 1. It should be noted that the interval of time steps[151;200], for
which the 9 context class trajectories have been predicted, lies completely within the interval[71;600]
of the training set and the network has thus actually been trained on it.
So far, only the first network output has been used and the network has thus been restricted to its
single-step forecast. When exploiting the multiple-output capabilities of the MLP and using not only
the first output but all 11 for deriving the categorical time series, results are expected to be more fa-
vorite. Fig. 6.31b shows the concatenated predicted time series from only 5 prediction steps (instead
of 50 single-step predictions) but using the multi-step predictions as defined in the output vector. The
associated loss in this case is 0,62. It should be noted that the MLP predictions are generated with the
inputs from the test set, which are extracted from the real time series. An iterative approach, where the
values predicted by previous steps are used as the input, would match the procedure used by ARMA,
but is expected to perform even worse. This means that for the MLP 50-step prediction, only every fifth
value would be available after a single prediction step.

6.4.3.3 SVR

Support Vector Regression has proven to be highly successful for chaotic time series prediction. In
this evaluation, libSVM [CL01] is applied with the approach described in [HCL03], i.e. the sliding



6.4. CONTEXT PREDICTION 117

0 100 200 300 400 500 600 700 800 900 1000
10−6

10−5

10−4

10−3

10−2

10−1

100

1000 Epochs

Tr
ai

ni
ng

−B
lu

e 
 G

oa
l−

B
la

ck

Performance is 0.00241888, Goal is 1e−05

Figure 6.29: Effect of the number of training epochs on the MLP training error
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Figure 6.30: MLP forecast of the second context class trajectory

window method already described above for MLP prediction. As the minimal embedding dimension
(cf. [MOG97]) for our problem is not known, it needs to be estimated based on a human inspection of
the data set. Without additional knowledge and to achieve direct comparability, the same training and
test data sets that were used for the MLP are also used for SVR prediction. Therefore, an embedding of
15 non-consecutive points is used for this data set, which lies between the embedding of 6 and 20 used
in [MSR+97]. With a resolution reduced by a factor of 100, 50 steps are predicted, starting from step
150. In contrast to the MLP, the SVR approach has only two free parameters with reasonable default
values already set in libSVM. In [HCL03], it is suggested to perform an exhaustive grid search to find
optimal values for these two parameters in the case that the regression accuracy is not sufficient. As
shown in Table 6.9, SVR performs reasonably well in its default configuration: for the 50 single-step
predictions on each context trajectory, a mean RMSE of 0,067 is achieved. Although this does not
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(a) using only the first network output
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(b) using all network outputs

Figure 6.31: Aggregated MLP forecast showing the categorical cluster trajectory for 50 time steps,
starting from step 150

Context class trajectory RMSE

1 0,0690
2 0,0949
3 0,0392
4 0,0240
5 0,0977
6 0,0892
7 0,0089
8 0,0894
9 0,0909

Mean 0,0670

Table 6.9: RMSE values of continuous SVM forecasts for 50 single-step predictions starting at step 150

compare favorably to the MLP approach, Figures 6.32 and 6.33 show that, at least for the 50 single-step
predictions, SVR produces a usable result. The loss for the aggregated categorical context trajectory
prediction is 0,24.

6.4.4 Categorical Time Series

For evaluating categorical time series prediction methods, the respective best matching context class at
each time step is used as the time series value. Fig. 6.15 shows the class trajectory computed by LLGNG,
which will be used as the basis for the following evaluations. As a quality measure for categorical time
series prediction, a common loss function known as the0/1 lossis both simple and appropriate and
has already been used for evaluating time series prediction methods (cf. [Die02]). For each incorrectly
predicted context class, a loss of 1 is received, while a loss of 0 is assigned for every correctly predicted
value. The overall loss is obtained by simply averaging over all predicted values:
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Figure 6.32: SVR forecast of the second con-
text class trajectory
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Figure 6.33: Aggregated SVR forecast show-
ing the categorical cluster trajectory for 50
time steps, starting from step 150

l =
1
n

n

∑
i=1

{
1 i f yi 6= yi

0 otherwise

whereyi andyi are the true and predicted values of the time series at time stepi. As for the RMSEe,
smaller values ofl describe better prediction results.
This quality criterion is applicable to arbitrary categorical time series prediction methods. More complex
loss functions have been developed (see [Die02]), but for time series prediction, every incorrect predic-
tion should be considered equally. It might be possible to weight farther predictions lower than nearer
ones to emphasize correct short-term prediction over longer-term prediction, but then the (exponential)
decay parameter becomes of importance and determines the final prediction quality. For simplicity, the
simple 0/1 loss is used in the following.
In contrast to the continuous time series prediction methods described in the last section, the full reso-
lution of the (categorical) time series can be used, as the methods are able to cope with a data set of this
size with reasonable computing time. As most of the following methods have already been implemented
within the framework described in Chapter 5, they can be used directly in embedded systems.
The first three methods can be and consequently are used in online mode, which means that only a single,
sequential pass is used over the whole data set; training and evaluation are both done in this single pass.
At each time step, a prediction of the current value is computed and compared with the real value from
the time series, enabling the assessment of the loss function. Only then, the real current value is fed into
the prediction method for incrementally updating the internal model. This procedure implicates that at
the beginning of the time series, the predictive model is just being constructed and the predictions are
expected to be erroneous. By already including these initial transients in the overall loss function, those
methods are obviously handicapped when compared to batch training methods, where the evaluation
is performed after training has been completed and thus after the model has been constructed. On the
other hand, it offers a more realistic assessment of the prediction accuracy when used in online settings.
While not directly comparable to the loss values achieved by the other, batch-trained methods which
are evaluated in the following, they give an upper bound on the prediction error. When using the online
methods with batch training, which is always possible, the respective loss will typically be lower.
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Window size Loss Loss Loss
(complete, single step) (discarding duration) (50 steps)

3 0,0203 0,9870 0,4600
5 0,0207 0,9712 0,4600
7 0,0224 0,9495 0,4600

Table 6.10: Influence of the sliding window size on the predictive accuracy of a categorical central
tendency predictor

For the remaining two methods, the loss is computed over a test set — after batch-training the predictor
with a training set. To allow the prediction method access to long-term trends and periodical patterns
in the data set, 4/5 of the data are used as a training set and the remaining fifth is used as a test set,
corresponding to the time step intervals[1;70138] and[70139;87673] respectively.

6.4.4.1 Central Tendency Predictor

The central tendency predictor is used with a variable sliding window size and should be considered
as the baseline in prediction accuracy. As it is used for categorical time series prediction, the arith-
metical mean or median can not be computed. Instead, the context class with the maximum number of
occurrences within the time window is used as the prediction for the next time step. Table 6.10 shows
the loss values for the whole data set processed in single-pass, online mode, when discarding duration
information, and for a 50-step prediction for different sizes of the sliding window. The values in the
first column are obtained by counting erroneous predictions during a single run over the whole data set,
while the values in the second column are obtained the same way, but discarding duration information.
More precisely, consecutive sequences of equal classes are shortened to only a single time step. There-
fore, by discarding duration information, no direct repetitions will occur and central tendency predictors
are consequently not suited well. The loss values in the second column are shown for comparability
with the following prediction method. Finally, the loss values given in the third column are obtained
by “training” the predictor with only the first 150 time steps and then iteratively predicting the next 50
steps. For comparability with the continuous prediction methods, the same time frame is used and, only
for this column, the resolution of the data set has also been reduced by a factor of 100. It is important to
note that columns are not comparable with each other, but only with respective loss values from other
methods.
The good results for online, single step prediction owe to the fact that the data set shows slow changes
when processed in its full resolution, and a good assumption is therefore to continue with the last context
class for the next time step. As apparent from the loss, this simple assumption is true for over 97% of the
cases. For the 50-step iterative prediction at reduced resolution, the central tendency method performs
far worse, because it is limited to predict a single context class, specifically the one that was the most fre-
quent in the time window when the multi-step prediction started, indefinitely. An interesting detail is that
the loss values are independent of the sliding window size, which suggests that the time series was stable
at time step 150 (the starting point of the 50-step prediction) even at reduced resolution. As expected,
the loss values for the time series with discarded duration information indicate complete unsuitability
in this case, where a prediction of a single step corresponds to multiple steps in the uncompressed time
series.
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6.4.4.2 Active Lempel-Ziv

ALZ has no parameters that need to be set in advance but constructs its internal model, composed of
Markov chains with varying order, in a completely unsupervised way. Moreover, it is strictly determinis-
tic like the simple central tendency predictors and thus each (online) pass over the data set will produce
the same result. A single, online pass over the whole data set leads to an overall loss of 0,0245, which
is higher than the maximum loss caused by central tendency predictors and thus not acceptable. The
loss for 50-step prediction at reduced resolution is 0,46, because ALZ incidentally predicts the same
time series as the central tendency predictors (a single context class repeated for 50 steps). It is also
unacceptable, given the added complexity of ALZ with no gain in predictive accuracy over the simpler
central tendency predictors.
However, by discarding duration information as described for the central tendency predictor, the result-
ing loss of 0,3055 is noticeably higher than for the unprocessed time series, but compares very favorably
to the results of the central tendency predictor. These results are to be expected: discarding the duration
information results in a time series with the same resolution — in terms of the frequency of changes —
but in a highly compressed form, containing only 1843 instead of 87673 samples. This implicates that
a single predicted step in this compressed form corresponds to multiple steps in the uncompressed form
(on average 87673/1843≈ 48 consecutive steps). Obviously, for comparing the predicted compressed
trajectory with an uncompressed one, the duration that will be spent in predicted context classes also
needs to be predicted. This can be performed with the duration predictor, which is discussed next.

6.4.4.3 Duration Predictor

The duration predictor currently complements ALZ prediction where duration information is explicitly
discarded in the described setting. This separation of concern also enables both methods to be exchanged
independently; one predicts the next context, the other one the duration until this predicted context is
entered, i.e. the number of time steps until the next transition. While ALZ is currently used for the first
task in this combination, a duration predictor for the second method that applies the principles described
in Section 4.8.5 has been developed. For the present evaluation, it is trained in parallel to ALZ on the
same time series, i.e. the first 150 steps with reduced resolution in online mode. The resulting loss is
0,44, improving the ALZ-only result only slightly and thus suggesting further research on the duration
predictor.

6.4.4.4 HMM

Although currently incapable of online prediction with incremental model update, a HMM predictor
has also been implemented within the framework and is used for this evaluation. As usual with HMMs,
batch training is applied to learn the model parameters, in this case 4/5 of the categorical time series,
and the remaining time series is used as a test set for cross validation. After parameter estimation with
the standard Baum-Welch algorithm, single-step context prediction is performed in a straight-forward
way, also used e.g. in [RC03]: for each of the possible next contexts classes, a sequence is created by
appending the possible next class to a the sequence of the lastn context classes. This new sequence
is then tested against the HMM with the standard Viterbi algorithm to estimate the probability with
which the HMM would create this sequence. After all possible next contexts have been iteratively rated,
the context that produced the highest probability is taken as the prediction for the next time step. For
multi-step prediction, this procedure is performed iteratively, appending the predicted context to the
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sequence while sliding the window forwards at each time step. The prediction accuracy will be higher
when performing a direct multi-step prediction by evaluating multiple prediction steps at once, but
the generation of appropriate test sequences for the Viterbi algorithm shows exponential behavior with
regard to the number of time steps. Therefore, direct multi-step prediction with HMMs would — in
contrast to ALZ — be possible, but is NP-hard and thus intractable for practical applications. For this
evaluation, a sequence with a fixed length of 30 has been used.
One of the issues with HMMs is that the model structure, which includes the number of hidden states
and connections between the states, has to be selected a priori and can not be determined by the stan-
dard learning method. For some problem domains, knowledge about the properties of the underlying
process that generated the respective time series can be used by experts to explicitly create the model
structure. However, for many practical problems, including the problem of context prediction, the num-
ber of hidden variables in the creating process is unknown and needs to be determined systematically.
Various approaches have been proposed to select an appropriate number, e.g. [RC03] suggests that the
number of hidden states has been chosen to be equal to the size of the output alphabet. For predictors
within the architecture used in this thesis, this would mean to set the number of hidden states to the
number of automatically found context classes. Another approach is to use model selection criteria like
the Bayesian Information Criterion (BIC), which considers both the training error and the size of the
network [LB00]. Given the lack of knowledge about the context trajectory for the general case, the num-
ber of hidden statesk is selected by evaluating fully connected models withk = 2. . .30. The number of
steps necessary for a convergence of the Baum-Welch training and the loss value obtained by single-step
cross-validation with the whole test set is presented in Table 6.11. As can be seen, the HMMs with 16,
17, 18, 19, 24 and 25 hidden states perform similarly well for the single-step prediction. The second
group with 24 and 25 hidden states does not perform better than the first group with 16 to 19 states,
but already consumes noticeably more processing power and has therefore not been used. In the first
group, the differences in the loss values are marginal, so any number of hidden states from 16 to 19 is
a reasonable choice. Because there are nine different symbols in the time series, 18 hidden states seem
plausible (when the underlying model has pairs of states with similar observation symbol probability
distributions) and consequently this number of hidden states is selected for the computationally more
intensive multi-step prediction. However, it should be noted that the best HMM with its loss of 0,0534
still performs worse than the central tendency and ALZ predictors for the single-step prediction case.
For the 50-step prediction starting at time step 150 with reduced resolution, the HMM predictor also
achieves a loss of 0,46 by predicting again the same time series as the central tendency and ALZ pre-
dictors. Considering the successes of HMMs in other application areas, this result seems unreasonable.
Therefore, further experiments are performed to improve the accuracy of the HMM predictor by increas-
ing the size of the training set, whose initial 150 samples might be too small for the HMM approach.
Interestingly, the HMM with 18 hidden states can not improve its performance even when the training
set includes the complete prediction period, but produces a 50-step prediction loss of 1,0 when trained
with over 600 samples of the time series with reduced resolution, i.e. with roughly 2/3 of the whole
data set. Neither changing the number of hidden states nor the size of the sliding window, which was
performed in a full grid search fromk = 2. . .40 hidden states andl = 1. . .150 time steps in the sliding
window, can improve the loss any further.
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Hidden states Steps to convergence Loss

2 7 1,0000
3 12 0,8485
4 10 0,5332
5 17 0,3987
6 9 0,5317
7 29 0,2371
8 20 0,2480
9 17 0,2474
10 14 0,0662
11 22 0,0652
12 24 0,2367
13 93 0,2781
14 19 0,2371
15 23 0,2371
16 57 0,0552
17 54 0,0535
18 64 0,0550
19 119 0,0546
20 64 0,2378
21 107 0,3056
22 16 0,5227
23 92 0,1782
24 57 0,0534
25 27 0,0538
26 27 0,2368
27 54 0,0655
28 93 0,3052
29 42 0,2639
30 17 0,2366

Table 6.11: Influence of the number of hidden states on the predictive accuracy of a HMM

6.4.4.5 SVM

Support Vector Machines solve, in contrast to SVR, a classification problem. Although initially de-
veloped for two-class classification, there exist methods for achieving a multi-class classification by
combining multiple two-class SVM classifiers. Such a method is implemented in libSVM and can be
used for categorical time series prediction by mapping the time to a state space in a similar way as
done for continuous MLP and SVR predictions. For comparability, the same sliding window method
with identical embedding is used, but on the aggregated categorical time series instead of the individual
continuous time series. This accounts for a training set of 530 samples with an embedding of 15 and
a test set of 50 samples with the same embedding. In this case, the loss for 50 single-step predictions
is 0,04, i.e. only two samples from the test set were erroneously predicted. However, when using an
iterative procedure to compute a single 50-step prediction by using the predicted values as input for the
next prediction steps, the loss is increased to 0,46, as the same (constant) trajectory is predicted that is
also generated by the central tendency predictors and the unmodified ALZ.
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6.5 Summary and Discussion

The evaluation presented in this chapter is a proof-of-concept that context recognition and prediction
are possible with the developed architecture. For the intended scenario described in Section 6.1, context
prediction with a forecasting horizon of a few hours allows to provide additional benefit to the user. In
this evaluation, the methods were compared for a 50-step prediction at reduced resolution with a sam-
ple width of 30·100= 3000 seconds, yielding a prediction horizon of 150000 seconds or 41, 6̄ hours.
This exceeds the time frame necessary for achieving a first user-visible benefit of context prediction and
allows applications to exploit predictions for horizons of over a day. Although this does not tackle long-
term prediction in the area of weeks or months, it is already challenging and most evaluated time series
prediction methods perform poorly in this setting. Another complication in the considered scenario is
that the data set features missing values where no samples are available. For short-term prediction of
horizons under a day, this is not an issue because these non-consecutive areas are mostly consistent with
the sensing device being switched off during the night. However, mid-term and long-term predictions
are seriously handicapped by missing values, as apparent in this evaluation. Any improvement in pre-
diction accuracy most probably requires to explicitly consider the missing values in the predictor. Initial
transients are also an issue for prediction methods. Although there are no initial transients in the data set
itself, because no special considerations were taken during the experiment, online prediction methods
will suffer from the fact that their internal models are still being constructed while predictions already
need to be performed. In many real-life situations, such a “training” phase will be acceptable to users.
Therefore, initial transients have not been considered in this evaluation.
To allow the two main steps in the architecture, namely classification and prediction, to be assessed
independently, the quantitative evaluation and comparison of different methods has been split into two
parts. For context recognition, the final classification error has been defined in Section 6.3.1 and is used
for comparing three different unsupervised classification methods. Table 6.12 shows that the extended
LLGNG classification algorithm described in more detail in Section 4.6.4 compares favorably to the
k-means and SOM methods on this data set. This supports the results of the qualitative comparison
presented in Section 4.6.3. The k-means algorithm showed the highest classification error and visual
inspection of the computed context class trajectories was also not satisfying. For the SOM, a visualiza-
tion of the one-hour extract of the data set looks plausible, but the one-day and one-week extracts show
strong oscillations, which are unsuitable for context classes. Moreover, the final classification error on
the whole data set is only slightly lower than the error produced by k-means. LLGNG achieves a signif-
icantly lower classification error on the whole set, even though it is used in online mode which is more
challenging. It also produces the lowest mean classification error for the individual weeks, although the
difference to the SOM is not as pronounced as for the whole data set. A visual inspection of the gener-
ated context trajectories shows more stability with fewer oscillations. Summarizing, LLGNG is clearly
the most favorite of the evaluated classification algorithms for this setting. Its properties, analyzed in
Section 4.6.3, are also promising for other settings in the area of context recognition.
For context prediction, the results of this evaluation are not as clear. The prediction evaluation is based on
the context trajectory computed by LLGNG in the previous step and uses the 0/1 loss for quantitatively
comparing different methods. This criterion has the advantage that it can be used for both continuous
and categorical prediction. Although the online single-step prediction results can give some hint on how
well a specific approach adapted to the time series, for practical applications the multi-step prediction
will be more important because of the involved time frame. In this experiment, the sample rate was
chosen to be 30 seconds; a single-step prediction would therefore only cover this period. Table 6.13
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Algorithm Number of Final classification Final classification
clusters error (whole set) error (weeks mean)

K-means 6 0.7451 0,6469
SOM 1491 0.5659 0,1342

Extended LLGNG 103 0.0069 0,1178

Table 6.12: Summary of the classification algorithm evaluation

Algorithm 0/1 loss

ARMA 0,04
MLP 0,621)

SVR 0,241)

Central tendency 0,46
ALZ 0,46

ALZ + duration 0,44
HMM 0,46
SVM 0,46

1) for 50 single-step predictions instead of a single 50-step prediction

Table 6.13: Summary of the prediction algorithm evaluation

shows the result values of a 50-step prediction starting from time step 150. It should be noted that those
steps refer to a context trajectory with a resolution reduced by a factor of 100 to make it manageable
for all prediction methods. Therefore, a single prediction step represents almost an hour. Surprisingly,
ARMA performed very well for this data set and outperformed all other methods in terms of the 0/1
loss. The expected reason for this success is the seasonal correction used in the pre-processing step of
the ARMA approach. It is though difficult to perform this correction automatically in an online way, no
solution is yet implemented for estimating the lag from an incrementally computed ACF as it is available
for context prediction data sets. For categorical time series prediction, ALZ in combination with the
duration predictor performed best, but nonetheless only slightly better than the other methods and still
unacceptable in terms of accuracy. Generally, the loss values of the continuous and categorical methods
are not completely comparable because for the continuous prediction methods and SVM, a larger part
of the data set was used for training, which actually contained the 50 steps that were subsequently
predicted. For the other methods, only the first 150 steps could be used for training. The reason is that
the online methods (as implemented in the form of modules within the framework) keep an internal
state that would need to be reset if they were first trained with the full data set but then applied to a
sequence that was already presented to the algorithm. This reset can not be done in a way independent
of the algorithm internals and would not represent the normal operation mode of those predictors. Thus,
batch training algorithms were given a better chance on predicting this specific sequence. This should be
considered when interpreting the results summarized in Table 6.13 as a preparation for other applications
or data sets.
In this evaluation, the results of the MLP are most probably worse than they could be. Under certain
conditions, MLP networks have been shown to outperform ARMA methods, e.g. in [TF93], but in all
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of those cases, careful pre-processing and selection of network structure was the result of a supervised,
expert-driven process. The purpose of this evaluation is to show the applicability of different prediction
methods without significant human intervention, mostly in an unsupervised manner. MLPs can perform
very well, but they need to be carefully applied to do so. ARMA, on the other hand, performed surpris-
ingly well without especial intervention. Although it could not be applied directly to context prediction
in information appliances in the same way as described above, mainly due to the seasonal correction, it
seems more reasonable to derive automatic model selection procedures for ARMA than for MLPs.
The HMM predictor also performed worse than it would have been expected and the two most likely
reasons for this poor performance are that the number of training samples was too low for this type
of statistical model and that the intrinsic exponential distribution of state durations in the standard for-
mulation of HMMs was not compatible with the longer sub-sequences of similar states where no state
changes occur. VDHMMs or other models address the latter issue and are subject to future research.
Another probable explanation is that a first-order Markov model is simply not appropriate for modelling
this time series, as suggested in Section 4.8.5. The fact that the ARMA model performed far better
than all other models suggests that the explicit seasonal correction, which was only used by the ARMA
approach, was the key to its success. It is still an open issue how such a seasonal correction could be
applied to categorical time series prediction or how the lag can be found automatically for ARMA mod-
els in an online, unsupervised way. The Episode Discovery algorithm might be a promising candidate,
but not enough details have been published to reproduce the results reported in [HC03]. Another open
problem area is the topic of missing values: It is currently only dealt with in the classification step, but
explicitly taking missing values in the data set into account in the prediction step is also an issue for
future research on context prediction.
The majority of the categorical prediction methods have the significant advantage that they are online
methods and can cope with large data sets. Some of the methods, more specifically ARMA, the central
tendency predictors, ALZ, the duration predictor, SVR and SVM are strictly deterministic and therefore
are not dependent on some random initialization. The advantage that they do not converge against local
maxima should not be underestimated, as in an online setting, multiple model instances can not be tried
to find the best one.

It is important to note that the results presented in this chapter arenot universally valid. A rigorous
analysis of multiple different data sets and a quantitative comparison of the presented classification and
prediction methods based on these are outside the scope of this thesis, whose main aim is to develop
an architecture for context prediction independently of specific application areas and scenarios. It is
subject to future, more specific studies to set up and perform multiple experiments for collecting sensor
data with a controlled level of variability in the settings. Nonetheless, the presented initial evaluation
based on a single but extensive data set shows the general applicability of the developed architecture
by successfully predicting future contexts in the time frame of multiple hours, even if the prediction
accuracy leaves room for improvement. The quantitative comparison of different methods also shows
how they can be used for context prediction and therefore eases their application to other data sets.
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Chapter 7

Conclusion

Pervasive computing strives towards a future world of interconnected, embedded and smart devices
dispersed over and embedded into the environment. In this vision, artifacts of the physical world act
as an implicit interface to the virtual one, blurring the borders between them. The possibilities that
emerge from computer systems being available everywhere, everytime and to everybody can currently
hardly be estimated; neither can the risks. A key issue in a world of pervasive computing, where devices
communicate and interact seamlessly and autonomously with each other is to simplify user interaction.
Technological advances always have an impact on the daily lives of people who are not involved with
the scientific or technical field that enabled these advances. A logical consequence is that interfaces to
new technologies with possibly large impact must be designed in a way so as to be suitable for the
majority of their intended user base.
For the vision of pervasive computing with accustomed objects of the physical world as its proclaimed
interface to new, hidden functionality, this demands user interfaces that are intuitive and efficient. One
prerequisite for such interfaces is that the devices must be aware of their environment, and that they
must adapt to the context in which they are used. The termcontext awarenesshas been established
as the property of computer systems to be aware of and adapt to context, and the associated research
field of context computingis currently a highly active one. The main focus of the present thesis is on a
branch thereof, namelycontext prediction. Context prediction aims at inferring future contexts from past
(observed) contexts. A device that is able to predict future contexts in addition to capturing current and
remembering past contexts enables the development of applications which offer additional functionality
by proactively assisting the user.
In this thesis, the possibilities for predicting context on an abstract level have been examined, an archi-
tecture for context prediction has been developed and different methods for context prediction within
this architecture have been evaluated qualitatively as well quantitatively. This last chapter shall add some
concluding remarks to the present thesis by summarizing it, giving a critical evaluation and providing
pointers for future research.
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7.1 Summary

The problem statement of this thesis, and subsequently the main focus, was to find concepts, architec-
tures and methods for context prediction. Along with specific challenges and a definition of the scope
of the present work, this has been more closely described in Chapter 1.

Context prediction generally builds upon two concepts introduced in earlier work: context computing —
more specifically awareness of past and current contexts — and proactivity, known from other research
fields like software agents. In Chapter 2, these foundations have been introduced and the notion of
context has been examined, including a general motivation for the use of context in computer systems
and a discussion of various definitions and different aspects of context. Because the use of proactivity
in combination with abstract context descriptions is a new issue in context computing research, a first
taxonomy of four application areas that can benefit from context prediction is given:reconfiguration,
accident prevention, alertingandplanning aid.

Since context computing is currently an active research field, many publications deal with topics around
the general area of context. In Chapter 3, the most closely related projects are listed and the present
thesis is positioned among and against other publications. The summarizing table of characteristics of
the specific projects shows that the concept of predicting context on the level of abstract identifiers has,
to the best of our knowledge, not been covered before by earlier published work.

The developed architecture for context prediction is presented in the main part in Chapter 4 and allows
online, unsupervised context recognition and prediction from a multitude of different sensors. Designed
as a multi-layer architecture, it has five steps which are coupled via simple interfaces:sensor data

acquisition(to gather raw data from sensing devices),feature extraction(to generate a more relevant
representation of sensor data, exploiting domain-specific knowledge),classification(to find similarities
and common patterns in the input data),labeling(to assign simple context labels to recognized classes),
andprediction(to forecast future contexts based on past behaviors). With the exception of the feature
extraction step, no knowledge about the application domain is incorporated into the internal models;
the developed architecture intentionally operates on a syntactic instead of a semantic level. This has
the advantage that the system is independent of the application area, but the disadvantage that semantic
interrelationships between contexts are disregarded.
Due to the consistent definition of simple interfaces between adjacent steps, the architecture achieves a
clear separation of concerns, supporting the development and evaluation of methods for context recogni-
tion and prediction independently of each other. Because the architecture is based on a filtering approach
where data flows only in one direction, this additionally facilitates its application in embedded systems
with limited resources and addresses privacy issues. One distinctive feature of this architecture is that
heterogeneous features extracted from various sensors can be used directly and without a specific cod-
ing in a common classification step for context recognition; by directly incorporating non-numerical
features, all information gathered from the available sensors is utilized without a typically deteriorative
mapping from non-numerical values to numerical ones. Abstracting arbitrary features to a set of opera-
tions that need to be available for each one enables the classification step to be performed directly on a
heterogeneous input space. For the majority of classification algorithms, only two operations are neces-
sary on each dimension of the input space, i.e. on each element of the feature vector that spans the input
space: a similarity measure, i.e. a distance metric, and an adaptation operator. Both operations have been
defined formally and in terms of their characteristics, and examples for various types of features have
been presented. By implementing these operations for all used features, a majority of the well-known
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classification methods can be used directly within the architecture. To ease the selection of appropriate
candidates, a list of requirements has been compiled and a selection of algorithms has been evaluated
qualitatively based on an extensive literature survey. One of the considered algorithms, namely the Life-
long Growing Neural Gas (LLGNG) classifier has been designed explicitly for online classification over
arbitrary long periods and is thus well suited for the purpose of context recognition. Within the scope of
the evaluation of classification algorithms, its basic methodology has been examined more closely. As
an adaptation towards context recognition, properties of the internal model are used to derive high-level
context identifiers, which have been termedmeta clustersin this thesis. Similarly to the classification
step, a literature survey on time series prediction methods also results in the compilation of a list of
requirements and a subsequent evaluation of a set of algorithms based on these requirements.

To assess the applicability of the chosen approach and to allow for the development of applications that
utilize context prediction, the concepts developed in terms of the architecture have been implemented as
a flexible, cross-platform software framework. The flexibility of the multi-layer architecture coupled by
simple interfaces is realized by a modularized implementation with loadable modules for the different
steps. A selection of feature extractor, classifier and predictor modules has already been implemented,
as presented briefly in Chapter 5 and in more detail in an accompanying diploma thesis [Rad04].

As an initial proof-of-concept of the presented architecture, a quantitative evaluation based on an ex-
tensive real-world data set has been shown in Chapter 6. The used data set was collected over a period
of about two months, includes highly heterogeneous feature samples for different situations, and is thus
challenging for context prediction. Following the general aim of unobtrusiveness, user behavior was
merely monitored but the user was not actively participating in the experiment, e.g. by periodically
entering the current context. Consequently, the data has been collected in a completely unsupervised
manner, reflecting the intended way of integrating context recognition and prediction into embedded
systems. A comparison of the extended LLGNG algorithm against the standard clustering methods k-
means and SOM shows that it outperforms the other methods with regard to classification error after
training. The quantitative evaluation of different prediction methods shows that context prediction for
prediction horizons of a few tens of time steps is possible, but the currently achieved prediction accuracy
suggests further research.

Assumptions

The developed architecture and its implementation are based on a few general assumptions about the
problem domain:

• Memory and computational resources are sparse, but not limited to some specific value. More
specifically, the architecture has been designed to use resources economically, but no eviction
policies for coping with a fixed amount of memory or prioritization methods for managing con-
current threads have been considered.

• There are no defined constraints concerning real-time operation.

• Other temporal constraints, e.g. when specific sensors can only be queried within defined inter-
vals, are not considered.

• When sensors are not directly connected but queried over some communication link like Bluetooth
or WLAN, the traffic volume is not limited.
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• Missing values in sensor data acquisition are explicitly handled, while faulty values are not. The
difference is that missing values can be detected by the sensing process, e.g. when a sensor does
not respond, but detection of faulty values necessitates an explicit error model specific to each
sensor.

Most of the presented considerations are valid only within these assumptions.

7.2 Contribution

The main contribution of this work can be seen in three interrelated areas:

• The development of a general architecture for context prediction which features:

– Flexibility due to simple interfaces between multiple well-defined steps: This makes the
architecture suitable for arbitrary kinds of sensors and a wide range of appliances.

– Clear separation of concerns: Implementations of feature extractors, classifiers, predictors
and user interaction are completely independent of each other and thus easily exchangeable.

– Coping with heterogeneity: The architecture has been designed to cope with heterogeneity
in sensor and feature data and apply a common classification step without necessitating a
mapping to numerical values.

• A systematic survey of classification and prediction algorithms for finding suitable candidates.
This includes the compilation of requirements on classification and prediction methods to support
a methodical, qualitative evaluation.

• The implementation of this architecture and the selected classification and prediction methods
with the following properties:

– Use of heterogeneous feature vectors for context recognition: Within the framework, the
concept to cope with heterogeneous sensor and feature vectors has been implemented; fea-
ture vectors do not need to be mapped to numerical values at any stage. The classification
step deals directly with arbitrary types of features and thus works on an input space com-
posed of heterogeneous dimensions.

– The implemented LLGNG classification module has been extended by the concept of meta
clusters to support the direct generation of high-level context identifiers.

– Development of a cross-platform framework suitable for devices with limited resources:
No framework for context recognitionand prediction is currently available that is aimed
explicitly at local operation on such devices.

This thesis is neither focused on hardware and sensing technology, nor is it about user interface design
and applications, nor does it develop new concepts for classification or prediction of data sets. It is an
integrative work with the aim of combining context awareness with prediction techniques, and therefore
describes a general architecture.
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7.3 Critical Evaluation

An important topic of pervasive computing in general and especially for context computing is privacy.
As briefly discussed in Section 4.2, user acceptance is and will remain an issue for current and near-term
applications within pervasive computing, mainly due to privacy concerns. This thesis does not explicitly
address these concerns either, which is a possible point for critique. Although the architecture has been
designed in a way that allows context prediction without storing a complete log of sensor data or the
past context trajectory and thus allows to design applications that adhere to high privacy standards, it
does not provide any means for enforcing a privacy policy upon every applied method and algorithm
over all steps.
The chosen approach to context recognition is a simple one, which tries to extract as much high-level
context information from low-level sensor data as possible with a severely limited knowledge about
the application area. By using additional constraints, it will most probably always be possible to find
a better and more accurate way for detecting the current context, given an in-detail knowledge about
the specific application area. Owing to the general aim of unobtrusiveness in all phases of device usage,
context recognition as presented in this thesis is limited to the syntactic level. By intentionally disregard-
ing domain-specific knowledge, semantic relationships between contexts can not be exploited. It could
be argued that context awareness is necessarily dependent on such knowledge, but this thesis explores
the possibilities of a completely syntactic approach. This confinement allowed the development of an
unobtrusive, unsupervised and online approach, which has the substantial advantages that it enforces
independence of the application area and is thus applicable to arbitrary ones and that it does not neces-
sitate a distinction between training and operational phases of context-aware systems. Nonetheless, for
many applications an approach on a semantic level might be more appropriate.
However, the general approach and subsequently derived methods for context prediction that have been
presented in this thesis are applicable to arbitrary application areas and can thus be applied on top of
other means of inferring the current context. As long as high-level context is identified by some concept
that can be regarded as that state of a user, the methodology is applicable.
There are a few problem areas associated with context recognition on mobile devices. Besides the limita-
tions defined by the general assumptions mentioned earlier, the problem area of context changes has not
yet been explored explicitly. Slow changes in user behavior, usually termed trends, are partially solved
by the classification step with its requirement of adaptivity. Sudden changes, which can be further dis-
tinguished as permanent and temporary, are also partially addressed by the required variable topology
in the classification step: when a sudden change in sensor readings occurs, either a previously learned
context class is reactivated or a new one is created. For the prediction step, slow or sudden changes in
the user behavior have currently not been considered, neither for temporal nor permanent changes. The
architecture for context prediction is not influenced by these issues, but methods used in the prediction
step should consider them.
In the opinion of the author, the weakest point in this thesis is the data set used as the basis for the
evaluation in Chapter 6. Conclusions drawn from this evaluation suggest a more complex experimental
design: by considering a set of different applications, multiple different test subjects acting as users of
the applications, different sets of factors like time and place, and most importantly, recording multiple
instances of each combination of these variables, more generally valid conclusions could be drawn.
For assessing the context classification and prediction accuracies of different methods and algorithms,
application-independent experiments will be necessary to infer recommendations of specific ones. The
results of the evaluation presented in this thesis give indications on the suitability of various methods,



132 CHAPTER 7. CONCLUSION

but for a general benchmark, a controlled level of variability in the data sets used for an evaluation is
necessary. Efforts are ongoing to develop and publish a publicly available, extensive data set explicitly
designed for benchmarking purposes, and the repository for context data sets mentioned in Section 5.5.2
is also expected to strongly promote this aim.

7.4 Outlook

Today, there are no “killer applications” for context computing, and it is debatable if a quest for such
applications is indeed a worthwhile one. Context computing is one of the building blocks of pervasive
computing and can be seen as a tool for application designers to assist in the development of more
user-friendly computer systems, allowing a broader public to use computing services as part of their ev-
eryday life. Context prediction is a more special and very powerful tool, but it is complex to implement.
Only when it is available in ready-to-use software libraries and frameworks, application designers can
effectively start to use it as a tool for solving their problems. The architecture developed in this thesis
has already been implemented as a framework to allow the easy development of applications that use
context prediction, but a few issues remain open for future work:

• Only a first set of prediction modules has been implemented and the initial evaluation showed that
a wider range of methods should be available to application designers. Additional methods need
to be implemented as modules for the framework.

• Logging of feature streams and recognized contexts and complete replaying of feature streams is
currently supported locally at each device, but accessing a central context data repository has not
yet been considered.

• The framework has been designed to enable an autonomous operation on resource limited devices,
and distributed execution on multiple networked devices is currently not supported. An integration
with the Context Toolkit, which is more flexible but not as light-weight, could offer the advantages
of both approaches.

• Event features as explained in Section 4.1.1 are currently not supported explicitly but need to be
converted to data streams by the respective feature extractors. Nonetheless, a direct support could
improve results for certain types of sensing technology.

Outside the scope of the specific implementation in terms of the presented software framework, some
ideas for future research on the architecture or the general approach to context prediction arise:

• An inclusion of domain-specific knowledge into the context model could improve the results in a
few areas: it can allow more accurate recognition of current context due to reduced ambiguities,
it can provide a more powerful query interface for applications, and it could assist in the context
prediction step by providing hints for future occurrences of contexts. All of these advantages
emerge from the additional information that is embodied in interrelationships between contexts.
An approach to combine the benefits of online, unsupervised context recognition as considered in
this thesis with a semantic context model that inherently depends on domain-specific knowledge
still needs to be devised.

• To improve the accuracy of prediction results, an automatic, online assessment of periodic patterns
within the context trajectories is necessary. It is also important to deal with multiple periodicities
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of different period length and phase. A new algorithm for detecting periodic patterns with un-
known period with a single pass over the time series has recently been presented [EAE04] and its
applicability to context prediction should be evaluated in detail.

• To enable the development and implementation of different user interface options for the labeling
step, rigorous research on HCI issues will be necessary, including studies on efficiency, distraction
and user acceptance.

• An integration of off-the-shelf sensors with off-the-shelf devices can support broader empirical
evaluations with a large number of test subjects. When context recognition and prediction is in-
corporated into consumer goods, no special considerations will need to be taken for their use. An
example could be the use of Bluetooth-enabled bio sensors — which might be embedded into
wrist watches or body-worn jewelry — in conjunction with Symbian OS based smart phones.

• Finally, an evaluation with a controlled level of variability in the data sets and multiple test sub-
jects will be necessary to derive more general statements about the context recognition and predic-
tion accuracies achieved with different methods. For recording long-term data sets, the generation
of appropriate data sets is difficult due to the human resources necessary for such a study.

Context prediction is a young topic, still at the outset of methodical research. When applied in a way that
still leaves users in the loop of control (cf. [BD03]), it can be a powerful tool to support users in their
daily lives and to foster a broad availability of computing services to a larger public. With intuitive and
context-aware user interfaces and continuous prediction of future, expected contexts, computer systems
can virtually disappear and let users again concentrate on their main tasks instead of becoming an end in
itself. The present thesis adds a further step towards this ambition, but many more still need to be done.
However, the social implications of pervasive computing must not be neglected; not only technological,
but more importantly non-technological issues like a felt loss of control will rather sooner than later
become urgent concerns. As it is neither possible nor desirable to slow down or prevent technological
advances, possible future issues of developments with far-reaching impact must necessarily be tackled
now, technologically, socially and legally.
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